Mejora de las concepciones de maestros en formación de la educación STEM

  1. Radu Bogdan Toma 1
  2. Diego Armando Retana Alvarado 2
  1. 1 Universidad de Burgos

    Universidad de Burgos

    Burgos, España


  2. 2 Universidad de Costa Rica

    Universidad de Costa Rica

    San José, Costa Rica


Revista Iberoamericana de Educación

ISSN: 1681-5653

Year of publication: 2021

Volume: 87

Issue: 1

Pages: 15-33

Type: Article

DOI: 10.35362/RIE8714538 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista Iberoamericana de Educación


Cited by

  • Dialnet Metrics Cited by: 4 (25-02-2023)
  • Web of Science Cited by: 2 (14-03-2023)

Índice Dialnet de Revistas

  • Year 2021
  • Journal Impact: 0.450
  • Field: EDUCACIÓN Quartile: C2 Rank in field: 87/228


  • Social Sciences: B

Journal Citation Indicator (JCI)

  • Year 2021
  • Journal Citation Indicator (JCI): 0.18
  • Best Quartile: Q4
  • Area: EDUCATION & EDUCATIONAL RESEARCH Quartile: Q4 Rank in area: 615/743


The growing interest for STEM acronym has resulted in diverse conceptualizations coexis-ting which challenge its understanding. As long as this acronym –recently defined as an educational approach– is intended to produce progress in science education, there is a need to improve teachers’ understanding about its meaning. This study presents a professional development program that aims at such an endeavor, and presents the results of its implementation with Costa Rican pre-service scien-ce teachers. A myriad of different conceptualizations have been identified, resulting in a six different STEM models ranging from the simplest (e.g. STEM as a mere acronym) to more developed models consistent with current definitions (e.g. STEM as the curricular integration of four disciplines). At the start of the program, conceptualizations of STEM as four separate disciplines or STEM as an acronym prevailed. The intervention has led to progress in abandoning simplistic conceptualizations. However, difficulties have been identified in developing conceptualizations consistent with current views of STEM education (e.g. STEM as a connection or curricular integration of four disciplines) raising questions about the appropriateness of an integrated STEM approach

Bibliographic References

  • Breiner, J. M., Harkness, S. S., Johnson, C. C. & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Bybee, R. W. (2013). The case for STEM education. Challenges and opportunities. NSTA press.
  • Capps, D. K., Crawford, B. A. & Constas, M. A. (2012). A review of empirical literature on inquiry professional development: Alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23(3), 291-318.
  • Çiftçi, A., Topçu, M. S. & Foulk, J. A. (2020). Pre-service early childhood teachers’ views on STEM education and their STEM teaching practices. Research in Science and Technological Education, 00(00), 1-27.
  • Couso, D. y Grimalt-Álvaro, C. (2020). ¿Qué es STEM y STEAM y por qué ponerse a ello? Aula de Innovación Educativa, 290, 71-72.
  • Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 515-541). Routledge.
  • Cunningham, C. M. (2018). Engineering in elementary STEM education: Curriculum design, instruction, learning, and assessment. Teachers College Press and Museum of Science Driveway.
  • Dare, E. A., Ring-Whalen, E. A. & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701-1720.
  • Domènech-Casal, J. (2019). STEM: Oportunidades y retos desde la Enseñanza de las Ciencias. Universitas Tarraconensis. Revista de Ciències de l’Educació, 1(2), 154.
  • García-Carmona, A. (2020). STEAM, ¿una nueva distracción para la enseñanza de la ciencia? Ápice. Revista de Educación Científica, 4(2), 35-50.
  • Herro, D. & Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416-438.
  • Herron, M. D. (1971). The nature of scientific enquiry. The School Review, 79(2), 171-212.
  • Honey, M., Pearson, C. & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. The National Academies Press.
  • Hsieh, H.-F. & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. Qualitative Health Research, 15(9), 1277-1288.
  • Johnson, C. C., Peters-Burton, E. E. & Moore, T. J. (2016). STEM road map: A framework for integrated STEM education. Routledge Taylor & Francis Group.
  • Kelley, T. R. & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1-11.
  • Margot, K. C. & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(1).
  • Martin-Hansen, L. (2002). Defining inquiry. The Science Teacher, 69(2), 34-37.
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J. & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822.
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C. & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61.
  • Perales, F. J. y Aguilera, D. (2020). Ciencia-Tecnología-Sociedad vs. STEM: ¿evolución, revolución o disyunción? Ápice. Revista de Educación Científica, 4(1), 1-15.
  • Radloff, J. & Guzey, S. (2016). Investigating Preservice STEM Teacher Conceptions of STEM Education. Journal of Science Education and Technology, 25(5), 759-774.
  • Ring, E. A., Dare, E. A., Crotty, E. A. & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467.
  • Roehrig, G. H. & Luft, J. A. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26(1), 3-24.
  • Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20-26.
  • Toma, R. B. (2020a). Integrando la programación computacional en el enfoque STEM: un ejemplo sobre la calidad del agua [Integrating computational programming into the STEM approach: an example on water quality] (I. M. Greca & J. Á. Meneses-Villagrá (eds.)). Dextra Editorial S.L.
  • Toma, R. B. (2020b). STEM education in elementary grades: Design of an effective framework for imporving attitudes towards school science. University of Burgos.
  • Toma, R. B. & García-Carmona, A. (2021). «De STEM nos gusta todo menos STEM». Análisis crítico de una tendencia educativa de moda. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 39(1), 65.
  • Toma, R. B. & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. EURASIA Journal of Mathematics, Science & Technology Education, 14(4), 1383-1395.
  • Vergara, C. y Cofré, H. (2012). La Indagación Científica: Un concepto esquivo, pero necesario. Revista Chilena de Educación Científica, 11(1), 30-38.
  • Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11-26.