Reactividad álcali-sílice y álcali-silicato en pizarras

  1. Campos de la Fuente, Pablo Luis 1
  2. Gadea Sainz, Jesús 1
  3. Soriano Carrillo, Jesús 2
  4. Martín, A. 1
  5. Calderón Carpintero, Verónica 1
  1. 1 Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Escuela Politécnica Superior, Universidad de Burgos. Burgos
  2. 2 2Laboratorio Central de Estructuras y Materiales (CEDEX), Madrid.Estudios Geológicos, 66(1)enero-junio 2010, 91-98ISSN: 0367-0449doi:10.3989/egeol.40143.094JY0-10 Campos 9/6/10 14:14 Página 91
Journal:
Estudios geológicos

ISSN: 0367-0449

Year of publication: 2010

Volume: 66

Issue: 1

Pages: 91-98

Type: Article

DOI: 10.3989/EGEOL.40143.094 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Estudios geológicos

Abstract

This paper presents a study of the reactivity of the slates with alkali hydroxides released by the cements in concretes and mortars. For this purpose several essays were performed under different conditions to a selection of slates of different origins and composition. It has been shown that all the tested slates are susceptible to alkali-silica and alkali-silicate reactivity with the alkalis of the cement and that not all the tests routinely performed to detect such reactions are reliable. Verified the reactivity of these rocks, the causes of observed behaviours and the possibilities to minimize or eliminate this reactivity are studied so that the slates could be in use in contact with cement in composite materials. The use of pozzolanic cements turns out to be effective for the elimination of this type of reactions.

Bibliographic References

  • Dent Glasser, L.S. & Kataoka, N. (1981). The chemistry of alkali-aggregate reaction. Cement and Concrete Research, 11: 1-9. doi:10.1016/0008-8846(81)90003-X
  • Fournier, B. & Bérubé, M.A. (2000). Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications. Journal of Civil Engineering, 27: 167-191. doi:10.1139/cjce-27-2-167
  • García-Lodeiro, I.; Palomo, A. & Fernández-Jiménez, A. (2007). Alkali-aggregate reaction in activated fly ash systems. Cement and Concrete Research, 37: 175-183. doi:10.1016/j.cemconres.2006.11.002
  • Herrador, M.F.; Martínez-Abella, F. & Rabuñal Dopico, J.R. (2208). Experimental evaluation of expansive behaviour of an old-aged ASR-affected dam concrete: methodology and application. Materials and Structures, 41: 173-188. doi:10.1617/s11527-007-9228-y
  • Ichikawa, T & Miura, M. (2007). Modified model of alkali-silica reaction. Cement and Concrete Research, 37: 1291-1297. doi:10.1016/j.cemconres.2007.06.008
  • Menéndez, E. & Soriano, J. (2007). Procesos expansivos del hormigón: ensayos árido-álcali, ataque por sulfatos, hielo deshielo. Sistemas de prevención y actuaciones. Curso de Estudios Mayores de la Construcción, 17 edición. Instituto Eduardo Torroja, CSIC, Madrid.
  • Sánchez-Soto, P.J.; Ruiz-Conde, A.; Bono, R.; Raigón, M. & Garzón, E. (2007). Thermal evolution of a slate. Journal of Thermal Analysis and Calorimetry, 90: 133-141. doi:10.1007/s10973-007-7751-2
  • Stanton, T.E. (1948). Correlation of laboratory tests with field experiences of excessive concrete expansion induced by a reaction between the cement and aggregate. Proceedings of the American Society for Testing and Materials, 48: 1057-1066.
  • Walsh, J.A. (2007). The use of the scanning electron microscope in the determination of the mineral composition of Ballachulish slate. Materials Characterization, 58: 10951103. doi:10.1016/j.matchar.2007.04.013
  • Yujiang, W.; Min, D. & Mingshu, T. (2008). Alkali release from aggregate and the effect on AAR expansion. Materials and Structures, 41: 159-171. doi:10.1617/s11527-007-9227-z