Characterization of gypsum plasterboard with polyurethane foam waste reinforced with polypropylene fibers

  1. L. Alameda
  2. V. Calderón
  3. C. Junco
  4. A. Rodríguez
  5. J. Gadea
  6. S. Gutiérrez-González
Revista:
Materiales de construcción

ISSN: 0465-2746

Ano de publicación: 2016

Volume: 66

Número: 324

Tipo: Artigo

DOI: 10.3989/MC.2016.06015 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Materiales de construcción

Resumo

Gypsum plasterboard that incorporates various combinations of polyurethane foam waste and polypropylene fibers in its matrix is studied. The prefabricated material was characterized in a series of standardized tests: bulk density, maximum breaking load under flexion stress, total water absorption, surface hardness, thermal properties, and reaction to fire performance. Polypropylene fibers were added to the polyurethane gypsum composites to improve the mechanical behavior of the plasterboard under loading. The results indicate that increased quantities of polymer waste led to significant reductions in the weight/surface ratio, the mechanical strength and the surface hardness of the gypsum, as well as improving its thermal resistance. The polypropylene fibers showed good adhesion to the polymer and the gypsum matrix, which enhanced the mechanical performance and the absorption capacity of these compounds. The non-combustibility test demonstrated the potential of the new material for use in internal linings

Referencias bibliográficas

  • Chwieduk, D. (2003) Towards sustainable-energy buildings. Appl Ener. 76 [1-3], 211-17. https://doi.org/10.1016/S0306-2619(03)00059-X
  • Medineckiene, M.; Turskis, Z.; Zavadskas, E.K. (2010) Sustainable construction taking into account the building impact on the environment. J Environ Eng Landscape Manag. 18 [2], 118-27. https://doi.org/10.3846/jeelm.2010.14
  • Broun, R.; Menzies, G. (2011) Life cycle energy and environmental analysis of partition walls systems in UK. Procedia Eng. 21, 864-73. 2011. 11.2088
  • Rodríguez-Orejón, A.; Del Río-Merino; M., Fernández- Martínez, F. (2014) Characterization mixtures of thick gypsum with addition of treated waste from laminated plasterboards. Mater. Construcc. 64 [314], 1-7. https://doi.org/10.3989/mc.2014.03413
  • Serna, A.; Del Río, M.; Gabriel Palomo, J.; González, M. (2012) Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr Build Mater. 35, 633-41. https://doi.org/10.1016/j.conbuildmat.2012.04.093
  • Tadeu, A.; Moreira, A.; António, J.; Simıes, N.; Simıes, I. (2014) Thermal delay provided by floors containing layers that incorporate expanded cork granule waste. Energ Build. 68, 611-9. https://doi.org/10.1016/j.enbuild.2013.10.007
  • Ahmed, A.; Ugai, K.; Kame, T. (2011) Investigation of recycled gypsum in conjunction with waste plastic trays for ground improvement. Constr Build Mater. 25, 208-17. https://doi.org/10.1016/j.conbuildmat.2010.06.036
  • Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V. (2013) Design and properties of plaster mortars manufactured with ladle furnace slag. Mater Des. 52, 987-94. https://doi.org/10.1016/j.matdes.2013.06.041
  • Smakosz, A .; Tejchman, J. (2014) Evaluation of strength, deformability and failure mode of composite structural insulated panels. Mater Des. 54, 1068-82. https://doi.org/10.1016/j.matdes.2013.09.032
  • Melo, M.O.B.C.; Da Silva, L.B.; Coutinho, A.S.; Sousa, V.; Perazzo, N. (2012) Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energ Build. 47, 35-43. https://doi.org/10.1016/j.enbuild.2011.11.021
  • González Madariaga, F.J.; Lloveras Macia, J. (2008) EPS (expanded polystyrene) recycled blends mixed with plaster or stucco, some applications in building industry. Inf Constr. 60 [509], 35-43. https://doi.org/10.3989/ic.2008.v60.i509.589
  • Herrero, S.; Mayor, P.; Hernández Olivares, J. (2013) Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster-rubber mortars. Mater Des. 47, 633-42. https://doi.org/10.1016/j.matdes.2012.12.063
  • Alonso, J.A.; Reyes, E.; Gálvez, J.C. (2013) Study of the cracking of sandwich panels of plasterboard and rockwool. Mater. Construcc. 63 [311], 403-421.
  • Agulló, L.; Aguado, A.; Garcia, T. (2006) Study of the use of paper manufacturing waste in plaster composite mixtures. Build Environ. 41 [6], 821-7. https://doi.org/10.1016/j.buildenv.2005.03.011
  • Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Junco, C.; Calderón, V. (2012) Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Constr Build Mater.28, 653-8. https://doi.org/10.1016/j.conbuildmat.2011.10.055
  • Eve, S.; Gomina, M.; Orange, G. (2004) Effects of polyamide and polypropylene fibres on the setting and the mechanical properties of plaster. Key Eng Mater. 264-268, 2531-6. https://doi.org/10.4028/www.scientific.net/KEM.264-268.2531
  • Eve, S.; Gomina, M.; Hamel, J.; Orange, G. (2006) Investigation of the setting of polyamide fibre/latex-filled plaster composites. J Eur Ceram Soc. 26, 2541-6. https://doi.org/10.1016/j.jeurceramsoc.2005.07.063
  • Liu, K.; Wu, Y-F.; Jiang, X.L. (2008) Shear strength of concrete filled glass fiber reinforced gypsum walls. Mater Struct. 41 [4], 649-62. https://doi.org/10.1617/s11527-007-9271-8
  • EN 13279-1:2008. Gypsum binders and Gypsum Plasters. Part 1: Definitions and requirements.
  • EN 13279-2: 2005. Gypsum binders and gypsum plasters - Part 2: Test methods
  • EN 520: 2005 + A1. Gypsum plasterboards. Definitions, specifications and test methods.
  • EN 12667:2001. Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Products of high and medium thermal resistance.
  • EN ISO 1182:2010. Reaction to fire tests for building products Non-combustibility test.
  • Ciudad, A.; Lacasta, A.M.; Haurie, L.; Formosa, J.; Chimenos, J.M. (2011) Improvement of passive fire protection in a gypsum panel by adding inorganic fillers: Experiment and theory. Appl Therm Eng. 31, 3971-8. https://doi.org/10.1016/j.applthermaleng.2011.07.048
  • Panesar, D.K.; Shindman, B. (2012) The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem Concr Compos. 34, 982-92. https://doi.org/10.1016/j.cemconcomp.2012.06.003
  • Vasconcelos, G.; LourenÁo, P.B.; Camıes, A.; Martins, A.; Cunha, S. (2015) Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cem Concr Compos. 58, 29-39. https://doi.org/10.1016/j.cemconcomp.2015.01.001
  • Gencela, O.; del Coz Diaz, J.J.; Sutcuc, M.; Koksald, F.T.; Alvarez Rabanalb, F.P.; Martinez-Barrerae, G.; Brostowf, W. (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experim ental results. Energ Build. 70, 135-44. https://doi.org/10.1016/j.enbuild.2013.11.047
  • Jarabo, R.; Fuente, E.; Monte, M.C.; Mutjé, P.; Negro, C. (2012) Use of cellulose fibers from hemp core in fibercement production. Effect on flocculation, retention, drainage and product properties. Ind Crops Prod. 39, 89-96. https://doi.org/10.1016/j.indcrop.2012.02.017
  • Aghazadeh, J.; Sangghaleh, A.; Nazaric, A.; Pourjavad, N. (2011) Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites. Comp Mater Sci. 50 [5], 1619-24. https://doi.org/10.1016/j.commatsci.2010.12.020
  • Dubois, S.; Lebeau, F. (2013) Design, construction and validation of a guarded hot plate apparatus for thermal conductivity measurement of high thickness crop-based specimens. Mater Struct. 48[1-2] 407-21. https://doi.org/10.1617/s11527-013-0192-4
  • Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Blanco-Varela, M.T.; Calderón, V. (2012) Compatibility between gypsum and polyamide waste to produce lightweight plaster with enhanced thermal properties. Constr Build Mater. 34, 179-85. https://doi.org/10.1016/j.conbuildmat.2012.02.061
  • EN 12524:2000. Building materials and products. Hygrothermal properties. Tabulated design values.
  • Commission Decision of 8 February 2000 implementing Council Directive 89/106/EEC as regards the classification of the reaction to fire performance of construction products. Official Journal of the European Communities No L 50. 23.2.2000.
  • Binici, H.; Aksogan, O.; Nuri Bodur; M.; Akca, E.; Kapur, S. (2007) Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Constr Build Mater. 21, 901-6. https://doi.org/10.1016/j.conbuildmat.2005.11.004
  • Spanish Building Code (CTE DB-SI).
  • EN ISO 1716:2010. Reaction to fire tests for products - Determination of the gross heat of combustion (calorific value).
  • EN 13823-SBI: 2002. Fire technical testing of building products.
  • REAL DECRETO 110/2008, de 1 de febrero.