Predicting corporate failurethe GRASP-LOGIT Model

  1. Silvia Casado Yusta 1
  2. Laura Nuñez Letamendía 2
  3. Joaquín Antonio Pacheco Bonrostro 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

  2. 2 IE Business School, IE University
Journal:
Revista de métodos cuantitativos para la economía y la empresa

ISSN: 1886-516X

Year of publication: 2018

Volume: 26

Pages: 294-314

Type: Article

More publications in: Revista de métodos cuantitativos para la economía y la empresa

Abstract

Predicting corporate failure is an important problem in management science. This study tests a new method for predicting corporate failure on a sample of Spanish firms. A GRASP (Greedy Randomized Adaptive Search Procedure) strategy is proposed to use a feature selection algorithm to select a subset of available financial ratios, as a preliminary step in estimating a model of logistic regression for predicting corporate failure. Selecting only a subset of variables (financial ratios) reduces the costs of data acquisition, increases prediction accuracy by excluding irrelevant variables, and provides insight into the nature of the prediction problem allowing a better understanding of the final classification model. The proposed algorithm, that it is named GRASP-LOGIT algorithm, performs better than a simple logistic regression in that it reaches the same level of forecasting ability with fewer accounting ratios, leading to a better interpretation of the model and therefore to a better understanding of the failure process.

Funding information

This work has been partially supported by FEDER funds and the Spanish Ministry of Economy and Competitiveness (Projects ECO2013-47129-C4-3-R and ECO2016-76567-C4-2-R), the Regional Government of “Castilla y León”, Spain (Project BU329U14) and the Regional Government of “Castilla y León” and FEDER funds (Project BU062U16); all of whom are gratefully acknowledged.

Funders

Bibliographic References

  • Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 589-609.
  • Altman, E.; Marco, G. and Varetto F. (1994). Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks. Journal of Banking and Finance, 18, 505-529.
  • Arslan, O. (2012). Weighted LAD–LASSO method for robust parameter estimation and variable selection in regression. Computational Statistics & Data Analysis, 56 (6), 1952-1965.
  • Baesens, B.; Setiono, R.; Mues, C. and Vanthienen, J. (2003a). Using neural networks rule extaction and decision tables for credit-risk evaluation. Management Science, 49(3), 312-329.
  • Baesens, B.; Van Gestel, T.; Viaene, S.; Stepanova, M.; Suykens, J. and Vanthienen J. (2003b). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627-635.
  • Bala, J.; Dejong, K., Huang, J.; Vafaie, H. and Wechsler, H. (1996). Using learning to facilitate the evolution of features for recognizing visual concepts. Evolutionary Computation, 4 (3), 297-311.
  • Balcaen, S. and Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38 (1), 63-93.
  • Beaver, W. (1966). Financial ratios as predictors of failures. In: S. Davidson (ed.), Empirical Research in Accounting: Selected Studies (pp. 71-111), Chicago: Institute of Professional Accounting.
  • Cortes, C. and Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20 (3). 273-297.
  • Cotta C.; Sloper, C. and Moscato, P. (2004). Evolutionary search of thresholds for robust feature set selection: Application to the analysis of microarray data. Lecture Notes in Computer Science, 3005, 21-30.
  • Crone, S. F. and Finlay, S. (2012). Instance sampling in credit scoring: An empirical study of sample size and balancing. International Journal of Forecasting, 28(1), 224-238.
  • Curran, S. and Mingers J. (1994). Neural networks, decision tree induction and discriminant analysis: An empirical comparison. Journal of the Operational Research Society, 45 (4), 440-450.
  • Dambolena, I. G. and Khoury, S. J. (1980). Ratio stability and corporate failure. Journal of Finance, 35, 1017-1026.
  • Etheridge, H. L. and Sriram, R. S. (1996). A Neural Network Approach to Financial Distress Analysis. In: S. G. Sutton (ed.), Advances in Accounting Information Systems, Volume 4 (pp.201-222), Bingley: Emerald Group Publishing.
  • Fayyad, U. M. and Irani, K. B. (1992). On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8, 87-102.
  • Feo, T. A. and Resende M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8 (2), 67-71.
  • Feo, T. A. and Resende M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 2, 1-27.
  • Frydman, H.; Altman, E. I. and Kao, D. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance, 40(1), 269-291.
  • Ganster, H.; Pinz, A.; Rohrer, R.; Wildling, E.; Binder, M. and Kittler, H. (2001). Automated melanoma recognition. IEEE Transactions on Medical Imaging, 20 (3), 233-239.
  • Hua, Z.; Wang, Y.; Xu, X.; Zhang, B. and Liang, L. (2007). Predicting corporate financial distress on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434-440.
  • Iturriaga, F. J. L. and Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks: A study of US commercial banks. Expert Systems with Applications, 42(6), 2857-2869.
  • Jain, A. and Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153-158.
  • Jeong C.; Min, J. N. and Kim, M. S. (2012). A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction. Expert Systems with Applications, 39(3), 3650-3658.
  • Jones, F. L. (1987). Current techniques in bankruptcy prediction. Journal of Accounting Literature, 6, 131-164.
  • Jones, S. and Hensher, D. A. (2004). Predicting firm financial distress: a mixed logit model. The Accounting Review, 79 (4), 1011-1038.
  • Jourdan, L.; Dhaenens, C. and Talbi, E. (2001). A genetic algorithm for feature subset selection in data-mining for genetics. In: J. P. de Sousa (ed.), Proceedings of the 4th Metaheuristics International Conference (pp. 29-34), Porto: MIC.
  • Kohavi, R. (1995). Wrappers for performance enhancement and oblivious decision graphs. Ph. D. Thesis, Computer Science Department, Stanford University.
  • Laitinen, E. K. and Laitinen, T. (2000). Bankruptcy prediction. Application of the Taylor’s expansion in logistic regression. International Review of Financial Analysis, 9, 327-349.
  • Lee, S. H. and Urrutia, J. L. (1996). Analysis and prediction of insolvency in the property-liability insurance industry: A comparison of logit and hazard models. The Journal of Risk and Insurance, 63(1), 121-130.
  • Lee, S.; Yang, J. and Oh, K. W. (2003). Prediction of molecular bioactivity for drug design using a decision tree algorithm. Lecture Notes in Artificial Intelligence, 2843, 344-351.
  • Lennox, C. (1999). Identifying failing companies: A reevaluation of the logit, probit and DA approaches. Journal of Economics and Business, 51, 347-364.
  • Lewis, P. M. (1962). The characteristic selection problem in recognition systems. IEEE Transactions on Information Theory, 8, 171-178.
  • Li, H.; Lee, Y. C.; Zhou, Y. C. and Sun, J. (2011). The random subspace binary logit (RSBL) model for bankruptcy prediction. Knowledge-Based Systems, 24 (8), 1380-1388.
  • Liang, D.; Lu, C. C.; Tsai, C. F. and Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572.
  • Liu, H. and Motoda, H. (1998). Feature selection for knowledge discovery and data mining. Boston: Kluwer Academic.
  • Lu, Y.; Zeng, N.; Liu, X. & Yi, S. (2015). A new hybrid algorithm for bankruptcy prediction using switching particle swarm optimization and support vector machines. Discrete Dynamics in Nature and Society, 2015, Article ID 294930, 7 pp.
  • Mangalova, E. and Agafonov, E. (2014). Wind power forecasting using the k-nearest neighbors algorithm. International Journal of Forecasting, 30(2), 402-406.
  • Matsui, H. (2014). Variable and boundary selection for functional data via multiclass logistic regression modeling. Computational Statistics & Data Analysis, 78, 176-185.
  • Meiri, R. and Zahavi, J. (2006). Using simulated annealing to optimize the feature selection problem in marketing applications. European Journal of Operational Research, 171, 842-858.
  • Messier Jr., W. F. and Hansen, J. V. (1988). Inducing rules for expert system development: An example using default and bankruptcy data. Management Science, 34 (12), 1403-1415.
  • Murphy, P. M. and Aha, D. W. (1994). UCI Repository of Machine Learning. Department of Information and Computer Science, University of California.
  • Narendra, P. M. and Fukunaga, K. (1977). A Branch and Bound algorithm for feature subset selection. IEEE Transactions on Computers, 26(9), 917-922.
  • Neophytou, E. and Molinero, C. M. (2004). Predicting corporate failure in the UK: a multidimensional scaling approach. Journal of Business Finance and Accounting, 31(5-6), 677-710.
  • Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-111.
  • Oliveira, L. S.; Sabourin, R.; Bortolozzi, F. and Suen, C. Y. (2003). A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition. International Journal of Pattern Recognition and Artificial Intelligence, 17(6), 903-929.
  • Ooghe, H. and Balcaen, S. (2002). Are failure prediction models transferable from one country to another? An empirical study using Belgian financial statements. Vlerick Leuven Gent Management School Working Paper, 2002-3, 42 pp.
  • Pacheco, J.; Alfaro, E.; Casado, S.; Gámez, M. and García, N. (2012). A GRASP Method for Building Classification Trees. Expert Systems with Applications, 39(3), 3241-3248.
  • Pacheco, J.; Casado, S. and Núñez, L. (2009). A variable selection method based on tabu search for logistic regression models. European Journal of Operational Research, 199, 506-511.
  • Pacheco, J.; Casado, S.; Núñez, L. and Gómez, O. (2006). Analysis of new variable selection methods for discriminant analysis. Computational Statistics & Data Analysis, 51, 1463-1478.
  • Pitsoulis, L. S. and Resende, M. G. C. (2002). Greedy randomized adaptive search procedures. In: P. M. Pardalos and M. G. C. Resende (eds.), Handbook of Applied Optimization, Oxford: Oxford University Press.
  • Pompe, P. P. M. and Bilderbeek, J. (2005). The prediction of small- and medium-sized industrial firms. Journal of Business Venturing, 20(6), 847-868.
  • Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research, 3, 1371-1382.
  • Sarkar, S. and Sriram, R. S. (2001). Bayesian models for early warning of bank failures. Management Science, 47(11), 1457-1475.
  • Scott, J. (1977). Bankruptcy, secured debt and optimal capital structure. Journal of Finance, 33, 1-19.
  • Scott, J. (1981). The probability of bankruptcy. A comparison of empirical predictions and theoretical models. Journal of Banking and Finance, 5, 317-344.
  • Sebestyen, G. (1962). Decision-making processes in pattern recognition. New York: Macmillan.
  • Sexton, R. S.; Sriram, R.S. and Etheridge, H. (2003). Improving Decision Effectiveness of Artificial Neural Networks: A Modified Genetic Algorithm Approach. Decision Sciences, 34(3) 421-442.
  • Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74(1), 101-124.
  • Varetto, F. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking and Finance, 22, 1421-1439.
  • Wang, H.; Li, G. and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection through the LAD-Lasso. Journal of Business and Economic Statistics, 25(3), 347-355.
  • Wu, C. H.; Tzeng, G. H.; Goo, Y. J. and Fang, W. C. ( 2007). A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications, 32(2), 397-408.
  • Yang, Z.; You, W. and Ji, G. (2011). Using partial least squares and support vector machines for bankruptcy prediction. Expert Systems with Applications, 38(7), 8336-8342.
  • Zhang, C. X.; Wang, G. W. and Liu, J. M. (2015). RandGA: Injecting randomness into parallel genetic algorithm for variable selection. Journal of Applied Statistics, 42(3), 630-647.
  • Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22(Supplement), 59-82.