Evolución y proceso de fabricación de imanes “NEO” aplicados a motores de vehículos eléctricos

  1. Victoria Abad 1
  2. Jesús Sagredo 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Revista:
Revista de metalurgia

ISSN: 0034-8570

Año de publicación: 2018

Volumen: 54

Número: 3

Páginas: 127

Tipo: Artículo

DOI: 10.3989/REVMETALM.127 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de metalurgia

Resumen

Tras el desarrollo de los imanes Nd-Fe-B o “Neo”, éstos son ahora componentes esenciales en muchos campos de la tecnología debido a su capacidad para proporcionar un fuerte flujo magnético. Existen dos técnicas bien establecidas para la fabricación de imanes de tierras raras: a) el uso de la metalurgia de polvo para obtener cuerpos magnéticos de alto rendimiento, anisotrópicos, totalmente densos; y b) el proceso de hilado por fusión o HDDR (hidrogenación, decrepitación, desorción y recombinación) se usa ampliamente para producir polvos magnéticos para imanes aglomerados. En la industria de los imanes de Nd-Fe-B sinterizados, la producción total ha aumentado y su aplicación dominante es principalmente motores y en particular, su uso para automóviles híbridos es una de las aplicaciones más atractivas. También se han utilizado imanes aglomerados para motores pequeños, los estudios de nanocompuestos y de imanes Sm-Fe-N se han generalizado. Este artículo revisa el estado actual y las tendencias futuras en la investigación de imanes permanentes.

Referencias bibliográficas

  • Abad, V., Sagredo, J. (2018). Imanes permanentes de tierras raras. El nuevo oro negro de los vehículos eléctricos. Revista DYNA 93 (1), 47–51.
  • Aichi Steel Company (2012). MAGFINE Technical Datasheet. Disponible Web 10/07/2018: https://www.aichi-steel.co.jp/ ENGLISH/products/electromagnetic/bonded_magnet/ item/magfine_datasheet-201705.pdf.
  • Anderson, I.E., McCallum, R.W., Kramer, M.J. (2003). Development of improved Podwer for Bonded Permanent Magnets. IEEE International Magnetics Conference (INTERMAG), Boston, USA.
  • Anderson, I.A. (2012a). Permanent Magnet Development for Automotive Traction Motors. Hydrogen and Fuel Cells Program and Vehicle Technologies. AMES Laboratories. Disponible Web 10/07/2018: https://www.energy.gov/sites/ prod/files/2014/03/f10/ape015_anderson_2012_o.pdf.
  • Anderson, I.A. (2012b). Accomplishments in Rare Earth Anisotropic (R2Fe14B-type) Magnet Research. FY 2011 Progress Report. A.P.E. a. E. Motors. Disponible Web 10/07/2018: https://www.energy.gov/sites/prod/files/2014/03/f8/2011_ apeem_report.pdf.
  • Boldea, I., Tutelea, L.N., Parsa, L., Dorrell, D. (2014). Automotive Electric Propulsion Systems with Reduced or No Permanent Magnets: An Overview. IEEE T. Ind. Electron. 61 (10), 5696–5711. https://doi.org/10.1109/TIE.2014.2301754
  • Brown, D.N., Na, B.-M., Campbell, P. (2002). The comparison of anisotropic (and isotropic) powders for polymer bonded Rare-Earth permanent magnets. International Workshop; 17th, Rare-Earth Magnets and their Applications, Newark, USA, pp. 62–73.
  • Constantinides, S. (2010). The Magnetic Material Challenge. ARPA-E Workshop Rare Earth and Critical Materials. Arlington, VA. Disponible Web 10/07/2018: https://www. yumpu.com/en/document/view/37661052/the-magnetic-material-challenge-arnold-magnetic-technologies.
  • DOE (2011). Critical materials Strategy. Department of Energy USA. DOE/PI/0009. https://www.energy.gov/sites/prod/ files/DOE_CMS2011_FINAL_Full.pdf.
  • Deshpande, U.S. (2003). Recent advances in materials for use in permanent magnet machines-a review. IEEE International Electric Machines and Drives Conference, IEMDC'03, Vol 1, pp. 509–515. https://doi.org/10.1109/IEMDC.2003.1211311
  • Emagnets UK (2017). Temperature effects on alnico magnets. Disponible Web 10/07/2018: http://e-magnetsuk.com/alnico_ magnets/temperature_ratings.aspx.
  • Fessler, R. (2011). Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles. Oak Ridge National Laboratory. Disponible Web 10/07/2018: https://info.ornl.gov/sites/publications/files/ pub28840.pdf.
  • Grieb, B., Brown, D., Miller, D., Shet, N. (2009). Cost effective motor design, Based on: Isotropic and Anisotropic bonded NdFeB magnets. Magnequench, Leading Magnet Innovation. Magnetic Materials in Electrical Machine Applications, Pori, Finlandia. Disponible Web 10/07/2018: http://www.prizz.fi/sites/default/files/tiedostot/linkki2ID416.pdf.
  • Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P. (2011). Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23 (7), 821–842. https://doi.org/10.1002/adma.201002180 PMid:21294168
  • Honkura, Y. (2013). The development of Dy free MAGFINE and its applications to Motors. Symposium on "Current Research Trends in Magnetic Materials". http://komag. org/2013winter/Yoshinobu%20Honkura.pdf.
  • Keisan, O. (2016). Electric Machines Design Review. Power Lab at Middle East Technical University, Turkey. Disponible Web 10/07/2018: http://keysan.me/presentations/ee361_ magnets.html#14.
  • Liu, J. (2010). Rare Earth Magnet Design Considerations. ARPA-E Workshop Rare Earth and Critical Materials, Arlington, USA. Disponible Web 10/07/2018: https://www. arpa-e.energy.gov/sites/default/files/documents/files/Breakout_Session_Magnetics_LowRes.pdf
  • McCallum, R.W. (2012). Replacing critical rare earth materials in high energy density magnets. Bulletin of the American Physical Society 57 (1), APS Meeting 2012, Boston, Massachusetts. Disponible Web 10/07/2018: http://meetings.aps. org/Meeting/MAR12/Event/165012.
  • Salazar, D., Martín-Cid, A., Madugundo, R., Garitaonandia. J.S., Barandiaran, J.M., Hadjipanayis, G.C. (2016). Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd–Fe–B alloys. J. Phys. D Appl. Phys. 50 (1), 015305. https://doi.org/10.1088/1361-6463/50/1/015305
  • Sugimoto, S. (2011). Current status and recent topics of rare-earth permanent magnets. J. Phys. D Appl. Phys. 44 (6), 064001. https://doi.org/10.1088/0022-3727/44/6/064001
  • Sokolowski, P.K. (2007). Processing and protection of rare earth permanent magnet particulate for bonded magnet applications. Thesis, Master of Science, Iowa State University.
  • Trout, S. (2015). Permanent Magnets 101. Disponible Web 10/07/2018: https://www.slideshare.net/StanTrout/permanentmagnets 101troutbrief.
  • Vaimann, T., Kallate, A., Kilk, A., Belahcen, A. (2013). Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines. Proceedings Conference Africon 2013, pp. 1–5. https://doi.org/10.1109/AFRCON.2013.6757787
  • Yang, Y., Walton, A., Sheridan, R., Güth, K., Gauß, R., Gutfleisch, O., Buchert, M., Steenari, B.-M., Van Gerven, T., Jones, P.T., Binnemans, K. (2017). REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 3 (1), 122–149. https://doi.org/10.1007/s40831-016-0090-4
  • Zhao, L., Yu, H., Guo, W., Zhang, J., Zhang, Z., Hussain, M., Liu, Z., Greneche, J.M. (2017). Phase and hyperfine structures of melt-spun nanocrystalline (Ce1-xNdx) 16Fe78B6 alloys. IEEE T. Mag. 53 (11), 1800205.
  • Zhang, S., Xu, J., Junak, J., Fiederling, D., Sawczuk, G., Koch, M., Schalja, A., Podack, M., Baumgartner, J. (2012). Permanent magnet technology for electric motors in automotive applications. 2nd International Electric Drives Production Conference (EDPC), Nuremberg, Germany. https://doi.org/10.1109/EDPC.2012.6425118