Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt

  1. Salas, Miguel Ángel
  2. Pérez-Acebo, Heriberto
  3. Calderón, Verónica
  4. Gonzalo-Orden, Hernán
Revista:
Ingeniería e Investigación

ISSN: 0120-5609

Año de publicación: 2018

Volumen: 38

Número: 1

Páginas: 60-66

Tipo: Artículo

DOI: 10.15446/ING.INVESTIG.V38N1.65631 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Ingeniería e Investigación

Resumen

Una gran variedad de modificadores se han aplicado al betún para mejorar sus propiedades y rendimiento. Entre ellos, los polímeros han sido principalmente utilizados. El objetivo de este artículo es evaluar el uso del residuo de espuma de poliuretano como modificador de betún en mezclas bituminosas en caliente. La espuma de poliuretano es un residuo que se obtiene durante la fabricación del poliuretano para aislamiento térmico. A partir de un betún de penetración 50/70, se fabricaron y analizaron varias muestras con porcentajes de residuo en peso entre el 1 y el 5 %. Las muestras con porcentajes del 5 % de residuo o superiores produjeron un material áspero y se descartaron debido a su poca trabajabilidad. Se fabricó una mezcla bituminosa con un 4 % de porcentaje de betún modificado con residuo de poliuretano y fue comparado con una muestra con los mismos áridos y el betún original. Los resultados en el test de Marshall mostraron que la mezcla con betún modificado provocaba un aumento en la estabilidad y una menor deformación. Estos resultados sugieren que el empleo de residuo de espuma de poliuretano es un prometedor modificador de betún, contribuyendo además al reciclado de materiales de desecho.

Referencias bibliográficas

  • Adedeji, A., Grünfelder, T., Bates, F. S., Macosko, C. W., Stroup-Gardiner, M., & Newcomb, D.E. (1996). Asphalt modified by SBS triblock copolymer: structures properties. Polymer Engineering & Science, 36(12), 1707–23.
  • Al-Abdul Wahhab, H. I., Dalhat, M. A., & Habib, M. A. (2017). Storage stability and high-temperature performance of asphalt binder modified with recycled plastic. Road Materials and Pavement Design, 18(5), 1117-1134.
  • Airey G. D. (2003). Rheological properties of styrene–butadiene–styrene polymer modified road bitumens. Fuel, 82(14), 1709–19.
  • Arribas, I., Santamaria, A., Ruiz, E., Ortega-López, V., & Manso, J. M. (2015). Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, 90, 68-79.
  • ASTM (2015). ASTM D6927-15. Standard test method for Marshall Stability and flow of asphalt mixtures. West Conshohocken, PA: ASTM International.
  • Bahia, H. U., Hislop, W. P., Zhai, H., & Rangel, A. (1998) Classification of asphalt binders into simple and complex binders. Journal of the Association of Asphalt Paving Technologists, 67, 1–41.
  • Bai, M. (2017). Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Construction and Building Materials, 150, 766-773.
  • Carrera, V., Cuadri, A. A., García-Morales, M., & Partal, P. (2015). The development of polyurethane modified bitumen emulsions for cold mix applications. Materials and Structures, 48(10), 3407-3414.
  • CEN (2005). EN 12697-6. Bituminous mixtures - Test methods for hot mix asphalt - Part 6: Determination of bulk density of bituminous specimens. Brussels, Belgium: CEN - European Committee for Standardization
  • CEN (2007a). EN 1426:2007 bitumen and bitminous binders - determination of needle penetration. Brussels, Belgium: CEN-European Committee for Standardization CEN (2007b) EN 1427:2007 bitumen and bitminous binders - determination of the softening point - ring and ball method. Brussels, Belgium: CEN-European Committee for Standardization
  • Chen, M. Z., Lin, J. T., Wu, S. P., & Liu, C. H. (2011) Utilization of recycled brick powder as alternative filler in asphalt mixture. Construction and Building Materials, 25(4), 1532- 1536.
  • Cuadri A.A., García-Morales, M, Navarro F. J., & Partal, P. (2014) Processing of bitumens modified by a bio-oilderived polyurethane. Fuel, 118, 83-90.
  • Dong, X. G., Lei, Q. F., Fang, W. J., & Yu, Q. S. (2005). Thermogavimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy. Thermochimica Acta, 427(1), 149–153
  • Fernández-Gómez, W. D., Rondón Quintana, H.,& Reyes Lizcano, F. (2013). A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33(1), 5-12.
  • García-Morales, M., Partal, P., Navarro, F. J., Martínez-Boza, F., & Gallegos, C. (2004). Linear Viscoeslasticity of recycled EVA-Modified bitumen. Energy & Fuels, 18, 357-364.
  • García-Travé, G., Tauste, R., Sol-Sánchez, M., MorenoNavarro, F., & Rubio-Gámez, M. C. (2018). Mechanical Performance of SMA Mixtures Manufactured with Reclaimed Geomembrane–Modified Binders. Journal of Materials in Civil Engineering, 30(2), 04017284.
  • Gutiérrez-González, S., Gadea, J., Rodríguez, A., Junco, C., & Calderón, V. (2012). Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Construction and Building Materials, 28(1), 653-658.
  • Hinislioglu, S, & Agar, E. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix, Materials Letters, 58(3), 267-271.
  • Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58-73.
  • Izquierdo, M. A., Navarro, F. J., Martínez-Boza, F. J., & Gallegos, C. (2012). Bituminous polyurethane foams for building applications: Influence of bitumen hardness. Construction and Building Materials, 30, 706-713.
  • Junco, C., Gadea, J. Rodríguez, A., Gutiérrez-González, S., & Calderón, V. (2012). Durability of lightweight masonry mortars made with White recycled polyurethane foam. Cement and Concrete Composites, 34(10), 1174-1179.
  • Lesueur, D. (2009). The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1), 42–82.
  • Lu, X., & Isacsson, U. (2001). Modification of road bitumens with thermoplastic polymers. Polymer Testing, 20(1), 77–86.
  • Masson, J. F. (2008). Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen. Energy & Fuel, 22(4), 2637–2640.
  • Ministerio de Fomento (2015) Orden FOM/2523/2014, de 12 de diciembre, por La que se actualizan determinados artículos del pliego de prescripciones técnicas generales para obras de carreteras y puentes, relativos a materiales básicos, a firmes y pavimentos, y a señalización, balizamiento y sistemas de contención de vehículo. Art. 542 Mezclas bituminosas en caliente tipo hormigón bituminoso. Gobierno de España, Madrid.
  • Moreno-Navarro, F., Sol-Sánchez, M., Jimenez del Barco, A., & Rubio-Gámez, M. C. (2017). Analysis of the influence of binder properties on the mechanical response of bituminous mixtures. International Journal of Pavement Engineering, 18(1), 73-82.
  • Navarro, F. J., Partal, P., Martínez-Boza, F., & Gallegos, C. (2004) Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel, 83(14), 2041–2049.
  • Newman, J. K. (1998). Dynamic shear rheological properties of polymer-modified asphalt binders. Journal of Elastomers & Plastics, 30(3), 245–263.
  • Padhan, R. K., & Gupta, A. A. (2018). Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Construction and Building Materials, 158, 337-345.
  • Pérez I., Toledano, M., Gallego, J., & Taibo, J. (2007). Mechanical properties of hot mix asphalt made with recycled aggregates from reclaimed construction and demolition debris. Materiales de Construcción, 57(285), 17-29.
  • Pérez-Acebo. H., Bejan, S., & Gonzalo-Orden, H. (2017). Transition Probability Matrices for flexible pavement deterioration models with half-year cycle time. International Journal of Civil Engineering. Advance online publication. DOI: 10.1007/s40999-017-0254-z
  • Pérez-Acebo, H., Mindra, N., Railean, A., & Rojí, E. (2017). Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal or Pavement Engineering. Advance online publication. DOI: 10.1080/10298436.2017.1353390
  • Redelius, P. G. (2000). Solubility parameters and bitumen. Fuel, 79(1), 27–35.
  • Rondón-Quintana, H. A., Hernández-Noguera, J. A., & Reyes-Lizcano, J.A. (2015). A review of warm mix asphalt technology: technical, economical and enviromental aspects. Ingeniería e Investigación, 35(3), 5-18.
  • Rondón-Quintana, H. A., Ocampo-Terreros, M. S., VaccaGámez, H. A., Reyes-Lizcano, F. A., Nieto-Mora, J. P., & Beltrán-Cruz, D. P. (2016). The mechanical behavior of two warm-mix asphalts. Ingeniería e Investigación, 36(3), 29–38.
  • Salas, M. A., Gadea, J., Gutiérrez-González, S., Horgnies, M., & Calderón, V. (2016). Recycled polyamide mortars modified with non-ionic surfactant: physical and mechanical strength after durability tests. Materials and Structures, 49(8), 3385-3395.
  • Santamaria, A., Rojí, E., Skaf, M., Marcos, I., & González, J. J. (2016). The use of steelmaking slags and fly ash in structural mortras. Construction and Building Materials, 106, 364-373.
  • Senior-Arrieta, V., & Córdoba-Maquilón, J. E. (2017). Mechanical characterization of porous asphalt mixes with fatty acid amides -FAA-. Ingeniería e Investigación, 37(1), 43-48.
  • Smagulova, N., Kairbekov, Z., Aubakirov, E., & Yermoldina, E. (2012). Production of bitumens from coal sources modified by elementary sulfur. Advanced Materials Research, 535, 1815–1818.
  • Su, N. & Chen, J. S. (2002) Engineering properties of asphalt concrete made with recycled glass. Resources, Conservation and Recycling, 35, 259-274.
  • Tribout, C., & Husson, B. (2010). Use of treated sediments in road building techniques. European Journal of Environmental and Civil Engineering, 1582), 197-213.
  • Vasiljevic-Shikaleska, A., Popovska-Pavlovska, F., Cimmino, S., Duraccio, D., & Silvestre, C. (2010). Viscoelastic properties and morphological characteristics of polymermodified bitumen blends. Journal of Applied Polymer Science, 118(3), 1320–1330.
  • Vila-Cortavitarte, M., Lastra-González, P., Calzada-Pérez, M. A., & Indacoechea-Vega, I. (2018). Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. Journal of Cleaner Production, 170, 1279-1287.
  • Wang, K., Yuan, Y., Han, S., & Yang, Y. (2017). Application of FTIR spectroscopy with solvent-cast film and PLS regression for the quantification of SBS content in modified asphalt. International Journal of Pavement Engineering. Advance online publication. DOI: 10.1080/10298436.2017.1413242
  • Wen, Y., Wang, Y., Zhao, K., & Sumalee, A. (2017). The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. International Journal of Pavement Engineering, 18(6), 547-559.
  • Yousefi, A. A. (2003). Polyethylene dispersions in bitumen: the effects of the polymer structural parameters. Journal of Applied Polymer Science, 90(12),