Theorems-in-Action for Problem-Solving and Epistemic Views on the Relationship Between Physics and Mathematics Among Preservice Physics Teachers

  1. Greca, Ileana M. 1
  2. de Ataíde, Ana Raquel Pereira
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Libro:
Mathematics in Physics Education
  1. Gesche Pospiech (ed. lit.)
  2. Marisa Michelini (ed. lit.)
  3. Bat-Sheva Eylon (ed. lit.)

Editorial: Springer

ISBN: 9783030046262

Año de publicación: 2019

Páginas: 153-173

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-04627-9_7 GOOGLE SCHOLAR

Referencias bibliográficas

  • Adams, W., Perkins, K., Podolefsky, N., Dubson, M., Finkelstein, N., & Wieman, C. (2006). New instrument for measuring student beliefs about physics and learning physics: The Colorado learning attitudes about science survey. Physical Review Special Topics Physics Education Research, 2(1), 1–14. https://doi.org/10.1103/PhysRevSTPER.2.010101 .
  • Ataide, A. R. P. (2013). O papel das matemáticas na compreensão de conceitos da termodinâmica (Tese de doutorado). Brasil: Universidade Federal da Bahia/Universidade Estadual de Feira de Santana
  • Ataíde, A. R. P., & Greca, I. M. (2012). Epistemic views of the relationship between physics and mathematics: Its influence on the approach of undergraduate students to problem solving. Science & Education, 22(6), 1405–1421. https://doi.org/10.1007/s11191-012-9492-2 .
  • Ataíde, A. R. P., & Greca, I. M. (2013). Estudo exploratório sobre as relações entre conhecimento conceitual, domínio de técnicas matemáticas e resolução de problemas em estudantes de licenciatura em Física. Revista Electrónica de Enseñanza de las Ciencias, 12(1), 209–233.
  • Bing, T. J., & Redish, E. F. (2007). The cognitive blending of mathematics and physics knowledge. AIP Conference Proceedings, 883(1), 26–29. https://doi.org/10.1063/1.2508683 .
  • Domert, D., Airey, J., Linder, C., & Kung, R. L. (2007). An exploration of university physics students’ epistemological mindsets towards the understanding of physics equations. NorDiNa Nordic Studies in Science Education, 3(1), 15–28. https://doi.org/10.5617/nordina.389 .
  • Eichenlaub, M., & Redish, E. F. (2018). Blending physical knowledge with mathematical form in physics problem solving. arXiv preprint arXiv:1804.01639.
  • Greca, I. M., & Ataíde, A. R. P. (2017). The influence of epistemic views about the relationship between physics and mathematics in understanding physics concepts and problem solving. In T. Greczyło & E. Debowska (Eds.), Key competences in physics teaching and learning (pp. 55–64). Cham: Springer. https://doi.org/10.1007/978-3-319-44887-9_5 .
  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models and modelling. Internacional Journal of Science Education, 22(1), 1–11. https://doi.org/10.1080/095006900289976 .
  • Greca, I. M., & Moreira, M. A. (2002). Além da detecção de modelos mentais dos estudantes: uma proposta representacional integradora. Investigações em Ensino de Ciências, 7(1), 30–45.
  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), 52–59. https://doi.org/10.1119/1.19520 .
  • Hudson, H. T., & Mcintiry, W. R. (1977). Correlation between mathematical skills and success in physics. American Journal of Physics, 45(5), 470–471. https://doi.org/10.1119/1.10823 .
  • Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge, MA: Harvard University Press.
  • Karam, R. A. S. (2007). Matemática como estruturante e física como motivação: Uma análise de concepções sobre as relações entre matemática e física. In E. Fleury (Organizer) (Ed.), VI Encontro Nacional de Pesquisa em Educação em Ciências. Florianópolis: Conference held by Abrapec.
  • Karam, Uhden & Hottecke (this book). The math as “prerequisite” illusion: Historical considerations and implications for physics teaching.
  • Lehavi, Y., Bagno, E., Eylon, B. S., Mualem, R., Pospiech, G., Böhm, U., Krey, O., & Karam, R. (2017). Classroom evidence of teachers’ PCK of the interplay of physics and mathematics. In T. Greczyło & E. Dębowska (Eds.), Key competences in physics teaching and learning (pp. 95–104). Wrocław/Cham: Springer.
  • Lozano, S. R., & Cárdenas, S. (2002). Some learning problems concerning the use of symbolic language in physics. Science & Education, 11(6), 589–599. https://doi.org/10.1023/A:1019643420896 .
  • Martínez-Torregrosa, J., López-Gay, R., & Gras-Martí, A. (2006). Mathematics in physics education: Scanning the historical evolution of the differential to find a more appropriate model for teaching differential calculus in physics. Science & Education, 15(5), 447–462. https://doi.org/10.1007/s11191-005-0258-y .
  • Mason, A., & Singh, C. (2010). Surveying graduate students’ attitudes and approaches to problem solving. Physical Review Special Topics—Physics Education Research, 6(2), 1–16. https://doi.org/10.1103/PhysRevSTPER.6.020124 .
  • Pietrocola, M. A. (2002). Matemática como estruturante do conhecimento físico. Caderno Brasileiro De Ensino De Física, 19(1), 89–109.
  • Pietrocola, M. (2010). Mathematics structural language of physics thought. In M. Vicentini & E. Sassi (Eds.), Connecting research in physics education with teacher education (pp. 35–48). New Delhi: Angus & Grapher Publishers.
  • Planinic et al. (this book). Student understanding of graphs in physics and mathematics.
  • Pospiech, G. (this book). Mathematics and physics their interplay and its relevance for teaching.
  • Redish, E. (2005). Problem solving and the use of math in physics courses. Invited talk presented at the conference, world view on physics education in 2005: focusing on change, Delhi. http://www.physics.umd.edu/perg/papers/redish/IndiaMath.pdf
  • Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: Disciplinary culture and dynamic epistemology. Science & Education, 24(5–6), 561–590. https://doi.org/10.1007/s11191-015-9749-7 .
  • Redish, E. F., Saul, J. M., & Steinberg, R. N. (1998). Student expectations in introductory physics. American Journal of Physics, 66(3), 212–224. https://doi.org/10.1119/1.18847 .
  • Romer, R. H. (1993). Reading the equations and confronting the phenomena: The delights and dilemmas of physics teaching. American Journal of Physics, 61(2), 128–142. https://doi.org/10.1119/1.17327 .
  • Roorda, G., Vos, P., & Goedhart, M. J. (2015). An actor-oriented transfer perspective on high school students’ development of the use of procedures to solve problems on rate of change. International Journal of Science and Mathematics Education, 13(4), 863–889. https://doi.org/10.1007/s10763-013-9501-1 .
  • Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43(6), 535–555. https://doi.org/10.1002/tea.20136 .
  • Tuminaro, J., & Redish, E. F. (2007). Elements of a cognitive model of physics problem solving: Epistemic games. Physical Review Special Topics-Physics Education Research, 3(2), 1–22. https://doi.org/10.1103/PhysRevSTPER.3.020101 .
  • Uhden, O., & Pospiech, G. (2013). Die physikalische Bedeutung der mathematischen Beschreibung – Anregungen und Aufgaben fur einen neuen Umgang mit der Mathematik. Praxis der Naturwissenschaften – Physik in der Schule, 62(2), 13–18.
  • Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T. Carpenter, J. Moser, & T. Romberg (Eds.), Addition and subtraction. A cognitive perspective (pp. 39–59). Hillsdale, N.J: Lawrence Erlbaum.
  • Vergnaud, G. (1990). La théorie des champs conceptuels. Récherches en Didactique dês Mathématiques, 10(2–3), 133–170.