Epistemological Debate Underlying Computer Simulations Used in Science Teaching: The Designers’ Perspective

  1. Seoane, M. Eugenia
  2. Greca, Ileana M. 1
  3. Arriassecq, Irene
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Libro:
Teaching Science with Context: Historical, Philosophical, and Sociological Approaches
  1. Maria Elice de Brzezinski Prestes (ed. lit.)
  2. Cibelle Celestino Silva (ed. lit.)

Editorial: Springer

ISSN: 2520-8594 2520-8608

ISBN: 9783319740355

Año de publicación: 2018

Páginas: 405-417

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-319-74036-2_25 GOOGLE SCHOLAR

Referencias bibliográficas

  • Acevedo Díaz, J. A. (2008). El estado actual de la naturaleza de la ciencia en la didáctica de las ciencias. Revista Eureka Enseñanza de Divulgación Científica, 5(2), 134–169.
  • Bayraktar, S. (2002). A meta-analysis of the effectiveness of computer-assisted instruction in science education. Journal of Research on Technology in Education, 34(2), 173–188.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
  • Cartwright, N. (1999). Models and the limits of theory: Quantum Hamiltonians and the BCS model of superconductivity. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspective on natural and social science (pp. 241–281). Cambridge: Cambridge University Press.
  • de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201.
  • Doerr, H. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force. International Journal of Science Education, 19(3), 265–282.
  • Durán, J. (2015). Nociones de simulación computacional: simulaciones y modelos científicos. Argumentos de Razón Técnica, 18, 87–110.
  • Galison, P. (1996). Computer simulation and the trading zone. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 118–157). Stanford: Stanford University Press.
  • González Ugalde, C. (2014). Investigación fenomenográfica. Revista Internacional de Investigación en Educación, 7(14), 141–158.
  • Greca, I. M., Seoane, M. E., & Arriassecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Science & Education, 23(1), 897–921.
  • Guillemot, H. (2010). Connections between simulations and observation in climate computer modeling. Scientist’s practices and “bottom-up epistemology” lessons. Studies in History and Philosophy of Modern Physics, 41, 242–252.
  • Hernández Sampieri, R., Collado, C. F., & Lucio, P. B. (2010). Metodología de la Investigación (5th ed.). Santa Fe: McGraw-Hill.
  • Johnson, A., & Lenhard, J. (2011). Toward a new culture of prediction: Computational modeling in the era of desktop computing. In A. Nordmann et al. (Eds.), Science transformed? Debating claims of an epochal break (pp. 189–200). Pittsburgh: University of Pittsburgh Press.
  • Kirschner, P., & Huisman, W. (1998). Dry laboratories in science education: Computer-based practical work. International Journal of Science Education, 20, 665–682.
  • Koponen, I. T., & Tala, S. (2014). Generative modelling in physics and in physics education: From aspects of research practices to suggestions for education. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1143–1169). Dordrecht: Springer.
  • Kuppers, G., & Lenhard, J. (2005). Validation of simulation: Patterns in the social and natural sciences. Journal of Artificial Societies and Social Simulation, 8(4), 1–13. http://jasss.soc.surrey.ac.uk/8/4/3.html . Accessed 20 Jul 2016.
  • Lenhard, J. (2010). Computation and simulation. In R. Frodeman, J. T. Klein, & C. Mitcham (Eds.), The Oxford handbook on interdisciplinarity (pp. 246–258). Oxford: Oxford University Press.
  • López, S., Veit, E. A., & Araujo, I. S. (2016). Una revisión de la literatura sobre el uso de la modelación y simulación computacional para la enseñanza de la física en la educación básica y media. Revista Brasileira de Ensino de Física, 38(2), 1–16.
  • Marton, F. (1986). Phenomenography: A research approach to investigating different understandings of 25 reality. Journal of Thought, 21(3), 28–49.
  • Morgan, M. S., & Morrison, M. (Eds.). (1999). Models as mediators: Perspective on natural and social science. Cambridge: Cambridge University Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Ören, T. I. (2011a). The many facets of simulation through a collection of about 100 definitions. SCS M&S Magazine, 2(2), 82–92.
  • Ören, T. I. (2011b). A critical review of definitions and about 400 types of modeling and simulation. SCS M&S Magazine, 2(3), 142–151.
  • Seoane, M. E., Arriassecq, I., & Greca, I. (2014). Implicancias epistemológicas en la utilización de simulaciones computacionales en diversas disciplinas científicas. VIII Reunião Latino-Americana sobre Ensino de Física, 3–7 November 2014, Salvador, Bahía, Brasil.
  • Seoane, M. E., Arriassecq, I., & Greca, I. (2015). Simulaciones computacionales: un análisis fenomenográfico. Revista Enseñanza de la Física, 27, 289–296.
  • Sismondo, S. (1999). Models, simulations and their objects. Science in Context, 12(2), 247–260.
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370.
  • Winsberg, E. (1999). Sanctioning models: The epistemology of simulation. Science in Context, 12(2), 275–292.
  • Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70, 105–125.
  • Winsberg, E. (2010). Science in the age of computer simulation. Chicago: The University of Chicago Press.