Variable selection for linear regression in large databases: exact methods

  1. Pacheco, Joaquín 1
  2. Casado, Silvia 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Journal:
Applied Intelligence

ISSN: 0924-669X 1573-7497

Year of publication: 2020

Type: Article

DOI: 10.1007/S10489-020-01927-6 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Applied Intelligence

Bibliographic References

  • Mundry R, Nunn CL (2009) Stepwise model fitting and statistical inference: turning noise into signal pollution. Am Nat 173(1):119–123
  • Wang Y, Feng L (2019) A new hybrid feature selection based on multi-filter weights and multi-feature weights. Appl Intell 49(12):4033–4057
  • Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481
  • Nardo M, Saisana M, Saltelli A, Tarantola S, Hoffman A, Giovannini E (2005a) Handbook on constructing composite indicators: methodology and user guide. OECD statistics, working paper 2005/3
  • Bandura R (2008) A survey of composite indices measuring country performance: 2008 update. Office of Development Studies, United Nations Development Programme, Working Paper
  • Blancas Peral FJ, Gonzalez Lozano M, Guerrero Casas FM, Lozano Oyola M (2010) Indicadores Sintéticos de Turismo Sostenible: Una aplicación para los destinos turísticos de Andalucia. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, Rect@ 11:85–118
  • Parada Rico SE, Fiallo Leal E, Blasco-Blasco O (2015) Construcción de indicadores sintéticos basados en juicio experto: aplicación a una medida integral de excelencia académica. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, Rect@ 16:51–67
  • Févotte C, Torrésani B, Daudet L, Godsill SJ (2008) Sparse linear regression with structured priors and application to denoising of musical audio. IEEE Trans Audio Speech Lang Process 16(1):174–185
  • Févotte C, Daudet L, Godsill SJ, Torrésani B (2006) Sparse regression with structured priors: application to audio denoising. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol 3. IEEE, pp III–III
  • Mateos G, Bazerque JA, Giannakis GB (2010) Distributed sparse linear regression. IEEE Trans Signal Process 58(10):5262–5276
  • Bioucas-Dias JM, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):354–379
  • Iordache MD, Bioucas-Dias JM, Plaza A (2014) Collaborative sparse regression for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 52(1):341–354
  • Bioucas-Dias JM, Plaza A (2010) Hyperspectral unmixing: geometrical, statistical, and sparse regression-based approaches. In: Image and signal processing for remote sensing XVI, vol 7830. International Society for Optics and Photonics, p 78300A
  • Filzmoser P, Gschwandtner M, TodorovV (2012) Review of sparse methods in regression and classification with application to chemometrics. J Chemom 26(3–4):42–51
  • Li Y, Nan B, Zhu J (2015) Multivariate sparse group lasso for the multivariatemultiple linear regression with an arbitrary group structure. Biometrics 71(2):354–363
  • Vounou M, Nichols TE, Montana G, Initiative ADN (2010) Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. Neuroimage 53(3):1147–1159
  • Chatterjee S, Steinhaeuser K, Banerjee A, Chatterjee S, Ganguly A (2012) Sparse group lasso: consistency and climate applications. In: Proceedings of the 2012 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp 47–58
  • Rish I, Grabarnik G (2014) Sparse modeling: theory, algorithms, and applications. CRC press
  • Aneiros G, Ferraty F, Vieu P (2015) Variable selection in partial linear regression with functional covariate. Statistics 49(6):1322–1347
  • Gijbels I, Vrinssen I (2015) Robust nonnegative garrote variable selection in linear regression. Comput Stat Data Anal 85:1–22
  • Fan J, Li R (2001) Variable selection via non concave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360
  • Luo S, Ghosal S (2016) Forward selection and estimation in high dimensional single index models. Statistical Methodology 33:172–179
  • Breiman L (1995) Better subset regression using the nonnegative garrote. Technometrics 37(4):373–384
  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–278
  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499
  • Hans C, Dobra A, West M (2007) Shotgun stochastic search for “large p” regression. J Am Stat Assoc 102(478):507–516
  • Meiri R, Zahavi J (2006) Using simulated annealing to optimize the feature selection problemin marketing applications. Eur J Oper Res 171:842–858
  • Kilinc BK, Asikgil B, Erar A, Yazici B (2016) Variable selection with genetic algorithm and multivariate adaptive regression splines in the presence of multicollinearity. Int J Adv Appl Sci 3(12):26–31
  • Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl Intell 49(1):188–205
  • Brusco MJ, Steinley D (2011) Exact and approximate algorithms for variable selection in linear discriminant analysis. Comput Stat Data Anal 55(1):123–131
  • Brusco MJ, Singh R, Steinley D (2009) Variable neighborhood search heuristics for selecting a subset of variables in principal component analysis. Psychometrika 74:705–726
  • Pacheco J, Casado S, Porras S (2013) Exact methods for variable selection in principal component analysis: guide functions and preselection. Comput Stat Data Anal 57:95–111
  • Pacheco J, Casado S, Núñez L (2009) A variable selection method based on Tabu search for logistic regression models. Eur J Oper Res 199(2):506–511
  • Brusco MJ (2014) A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis. Comput Stat Data Anal 77:38–53
  • Dua, D and Graff, C (2019) UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science
  • Efroymson M (1960) Multiple regression analysis. Mathematical Methods for Digital Computers 1:191–203
  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc B 68(1):49–67
  • Yuan M, Lin Y (2007) On the non-negative garrotte estimator. J R Stat Soc B 69(2):143–161
  • Wu TT, Lange K (2008) Coordinate descent algorithms for lasso penalized regression. Ann Appl Stat 2(1):224–244