High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes
- Wilde, Patrick
- Barwe, Stefan
- Andronescu, Corina
- Schuhmann, Wolfgang
- Ventosa, Edgar
ISSN: 1998-0124, 1998-0000
Año de publicación: 2018
Volumen: 11
Número: 11
Páginas: 6034-6044
Tipo: Artículo
Otras publicaciones en: Nano Research
Referencias bibliográficas
- Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558–3586.
- Ma, W.; Ma, R. Z.; Wu, J. H.; Sun, P. Z.; Liu, X. H.; Zhou, K. C.; Sasaki, T. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale 2016, 8, 10425–10432.
- Xia, D. C.; Zhou, L.; Qiao, S.; Zhang, Y. L.; Tang, D.; Liu, J.; Huang, H.; Liu, Y.; Kang, Z. H. Graphene/Ni–Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater. Res. Bull. 2016, 74, 441–446.
- Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981–11989.
- Cheng, S. A.; Liu, H.; Logan, B. E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 2006, 40, 364–369.
- Jia, G.; Hu, Y. F.; Qian, Q. F.; Yao, Y. F.; Zhang, S. Y.; Li, Z. S.; Zou, Z. G. Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 14527–14534.
- Ji, J. Y.; Zhang, L. L.; Ji, H. X.; Li, Y.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013, 7, 6237–6243.
- Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
- Bernsmeier, D.; Chuenchom, L.; Paul, B.; Rümmler, S.; Smarsly, B.; Kraehnert, R. Highly active binder-free catalytic coatings for heterogeneous catalysis and electrocatalysis: Pd on mesoporous carbon and its application in butadiene hydrogenation and hydrogen evolution. ACS Catal. 2016, 6, 8255–8263.
- Kwon, S. J.; Fan, F.-R. F.; Bard, A. J. Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 2010, 132, 13165–13167.
- Dasari, R.; Robinson, D. A.; Stevenson, K. J. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. J. Am. Chem. Soc. 2013, 135, 570–573.
- Kwon, S. J.; Zhou, H. J.; Fan, F.-R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes— Theory and experiments. Phys. Chem. Chem. Phys. 2011, 13, 5394–5402.
- Kim, J.; Kim, B.-K.; Cho, S. K.; Bard, A. J. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 2014, 136, 8173–8176.
- Rees, N. V.; Zhou, Y.-G.; Compton, R. G. Making contact: Charge transfer during particle-electrode collisions. RSC Adv. 2012, 2, 379–384.
- Tanner, E. E. L.; Tschulik, K.; Tahany, R.; Jurkschat, K.; Batchelor-McAuley, C.; Compton, R. G. Nanoparticle capping agent dynamics and electron transfer: Polymergated oxidation of silver nanoparticles. J. Phys. Chem. C. 2015, 119, 18808–18815.
- Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.
- Kahk, J. M.; Rees, N. V.; Pillay, J.; Tshikhudo, R.; Vilakazi, S.; Compton, R. G. Electron transfer kinetics at single nanoparticles. Nano Today 2012, 7, 174–179.
- Guo, Z. H.; Percival, S. J.; Zhang, B. Chemically resolved transient collision events of single electrocatalytic nanoparticles. J. Am. Chem. Soc. 2014, 136, 8879–8882.
- Li, Y. X.; Cox, J. T.; Zhang, B. Electrochemical responses and electrocatalysis at single Au nanoparticles. J. Am. Chem. Soc. 2010, 132, 3047–3054.
- Zhu, T.; Fu, X. Y.; Mu, T.; Wang, J.; Liu, Z. F. pH-dependent adsorption of gold nanoparticles on p-aminothiophenolmodified gold substrates. Langmuir 1999, 15, 5197–5199.
- Lakbub, J.; Pouliwe, A.; Kamasah, A.; Yang, C.; Sun, P. Electrochemical behaviors of single gold nanoparticles. Electroanalysis 2011, 23, 2270–2274.
- Rhieu, S. Y.; Reipa, V. Tuning the size of gold nanoparticles with repetitive oxidation-reduction cycles. Am. J. Nanomater. 2015, 3, 15–21.
- Masitas, R. A.; Khachian, I. V.; Bill, B. L.; Zamborini, F. P. Effect of surface charge and electrode material on the sizedependent oxidation of surface-attached metal nanoparticles. Langmuir 2014, 30, 13075–13084.
- Liu, G. Z.; Luais, E.; Gooding, J. J. The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir 2011, 27, 4176–4183.
- Wang, Y.; Laborda, E.; Plowman, B. J.; Tschulik, K.; Ward, K. R.; Palgrave, R. G.; Damm, C.; Compton, R. G. The strong catalytic effect of Pb(II) on the oxygen reduction reaction on 5 nm gold nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 3200–3208.
- Wang, Y.; Laborda, E.; Tschulik, K.; Damm, C.; Molina, A.; Compton, R. G. Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale 2014, 6, 11024–11030.
- Barwe, S.; Masa, J.; Andronescu, C.; Mei, B.; Schuhmann, W.; Ventosa, E. Overcoming the instability of nanoparticlebased catalyst films in alkaline electrolyzers by using selfassembling and self-healing films. Angew. Chem., Int. Ed. 2017, 56, 8573–8577.
- Yu, Y.; Gao, Y.; Hu, K. K.; Blanchard, P.-Y.; Noël, J.-M.; Nareshkumar, T.; Phani, K. L.; Friedman, G.; Gogotsi, Y.; Mirkin, M. V. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes. ChemElectroChem 2015, 2, 58–63.
- Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.
- Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.
- Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.
- Clausmeyer, J.; Wilde, P.; Löffler, T.; Ventosa, E.; Tschulik, K.; Schuhmann, W. Detection of individual nanoparticle impacts using etched carbon nanoelectrodes. Electrochem. Commun. 2016, 73, 67–70.
- Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; López Córdoba, A.; Novak, P.; Shevchuck, A. I. et al. Electrochemical nanoprobes for single-cell analysis. ACS Nano 2014, 8, 875–884.
- Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008, 19, 015101.
- Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.
- Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.
- Xiao, X. Y.; Fan, F.-R. F.; Zhou, J. P.; Bard, A. J. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 2008, 130, 16669–16677.
- Kätelhön, E.; Compton, R. G. Understanding nano-impacts: Impact times and near-wall hindered diffusion. Chem. Sci. 2014, 5, 4592–4598.
- Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.
Los documentos del portal se actualizan diariamente. Esta fecha hace referencia a la actualización de la información relacionada con la estructura del portal (personas, grupos de investigación, unidades organizativas, proyectos...).