High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes

  1. Wilde, Patrick
  2. Barwe, Stefan
  3. Andronescu, Corina
  4. Schuhmann, Wolfgang
  5. Ventosa, Edgar
Revista:
Nano Research

ISSN: 1998-0124 1998-0000

Año de publicación: 2018

Volumen: 11

Número: 11

Páginas: 6034-6044

Tipo: Artículo

DOI: 10.1007/S12274-018-2119-4 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Nano Research

Referencias bibliográficas

  • Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558–3586.
  • Ma, W.; Ma, R. Z.; Wu, J. H.; Sun, P. Z.; Liu, X. H.; Zhou, K. C.; Sasaki, T. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale 2016, 8, 10425–10432.
  • Xia, D. C.; Zhou, L.; Qiao, S.; Zhang, Y. L.; Tang, D.; Liu, J.; Huang, H.; Liu, Y.; Kang, Z. H. Graphene/Ni–Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater. Res. Bull. 2016, 74, 441–446.
  • Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981–11989.
  • Cheng, S. A.; Liu, H.; Logan, B. E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 2006, 40, 364–369.
  • Jia, G.; Hu, Y. F.; Qian, Q. F.; Yao, Y. F.; Zhang, S. Y.; Li, Z. S.; Zou, Z. G. Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 14527–14534.
  • Ji, J. Y.; Zhang, L. L.; Ji, H. X.; Li, Y.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013, 7, 6237–6243.
  • Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
  • Bernsmeier, D.; Chuenchom, L.; Paul, B.; Rümmler, S.; Smarsly, B.; Kraehnert, R. Highly active binder-free catalytic coatings for heterogeneous catalysis and electrocatalysis: Pd on mesoporous carbon and its application in butadiene hydrogenation and hydrogen evolution. ACS Catal. 2016, 6, 8255–8263.
  • Kwon, S. J.; Fan, F.-R. F.; Bard, A. J. Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 2010, 132, 13165–13167.
  • Dasari, R.; Robinson, D. A.; Stevenson, K. J. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. J. Am. Chem. Soc. 2013, 135, 570–573.
  • Kwon, S. J.; Zhou, H. J.; Fan, F.-R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes— Theory and experiments. Phys. Chem. Chem. Phys. 2011, 13, 5394–5402.
  • Kim, J.; Kim, B.-K.; Cho, S. K.; Bard, A. J. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 2014, 136, 8173–8176.
  • Rees, N. V.; Zhou, Y.-G.; Compton, R. G. Making contact: Charge transfer during particle-electrode collisions. RSC Adv. 2012, 2, 379–384.
  • Tanner, E. E. L.; Tschulik, K.; Tahany, R.; Jurkschat, K.; Batchelor-McAuley, C.; Compton, R. G. Nanoparticle capping agent dynamics and electron transfer: Polymergated oxidation of silver nanoparticles. J. Phys. Chem. C. 2015, 119, 18808–18815.
  • Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.
  • Kahk, J. M.; Rees, N. V.; Pillay, J.; Tshikhudo, R.; Vilakazi, S.; Compton, R. G. Electron transfer kinetics at single nanoparticles. Nano Today 2012, 7, 174–179.
  • Guo, Z. H.; Percival, S. J.; Zhang, B. Chemically resolved transient collision events of single electrocatalytic nanoparticles. J. Am. Chem. Soc. 2014, 136, 8879–8882.
  • Li, Y. X.; Cox, J. T.; Zhang, B. Electrochemical responses and electrocatalysis at single Au nanoparticles. J. Am. Chem. Soc. 2010, 132, 3047–3054.
  • Zhu, T.; Fu, X. Y.; Mu, T.; Wang, J.; Liu, Z. F. pH-dependent adsorption of gold nanoparticles on p-aminothiophenolmodified gold substrates. Langmuir 1999, 15, 5197–5199.
  • Lakbub, J.; Pouliwe, A.; Kamasah, A.; Yang, C.; Sun, P. Electrochemical behaviors of single gold nanoparticles. Electroanalysis 2011, 23, 2270–2274.
  • Rhieu, S. Y.; Reipa, V. Tuning the size of gold nanoparticles with repetitive oxidation-reduction cycles. Am. J. Nanomater. 2015, 3, 15–21.
  • Masitas, R. A.; Khachian, I. V.; Bill, B. L.; Zamborini, F. P. Effect of surface charge and electrode material on the sizedependent oxidation of surface-attached metal nanoparticles. Langmuir 2014, 30, 13075–13084.
  • Liu, G. Z.; Luais, E.; Gooding, J. J. The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir 2011, 27, 4176–4183.
  • Wang, Y.; Laborda, E.; Plowman, B. J.; Tschulik, K.; Ward, K. R.; Palgrave, R. G.; Damm, C.; Compton, R. G. The strong catalytic effect of Pb(II) on the oxygen reduction reaction on 5 nm gold nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 3200–3208.
  • Wang, Y.; Laborda, E.; Tschulik, K.; Damm, C.; Molina, A.; Compton, R. G. Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale 2014, 6, 11024–11030.
  • Barwe, S.; Masa, J.; Andronescu, C.; Mei, B.; Schuhmann, W.; Ventosa, E. Overcoming the instability of nanoparticlebased catalyst films in alkaline electrolyzers by using selfassembling and self-healing films. Angew. Chem., Int. Ed. 2017, 56, 8573–8577.
  • Yu, Y.; Gao, Y.; Hu, K. K.; Blanchard, P.-Y.; Noël, J.-M.; Nareshkumar, T.; Phani, K. L.; Friedman, G.; Gogotsi, Y.; Mirkin, M. V. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes. ChemElectroChem 2015, 2, 58–63.
  • Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.
  • Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.
  • Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.
  • Clausmeyer, J.; Wilde, P.; Löffler, T.; Ventosa, E.; Tschulik, K.; Schuhmann, W. Detection of individual nanoparticle impacts using etched carbon nanoelectrodes. Electrochem. Commun. 2016, 73, 67–70.
  • Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; López Córdoba, A.; Novak, P.; Shevchuck, A. I. et al. Electrochemical nanoprobes for single-cell analysis. ACS Nano 2014, 8, 875–884.
  • Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008, 19, 015101.
  • Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.
  • Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.
  • Xiao, X. Y.; Fan, F.-R. F.; Zhou, J. P.; Bard, A. J. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 2008, 130, 16669–16677.
  • Kätelhön, E.; Compton, R. G. Understanding nano-impacts: Impact times and near-wall hindered diffusion. Chem. Sci. 2014, 5, 4592–4598.
  • Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.