Implementation of a STEAM project in compulsory secondary education that creates connections with the environment

  1. Queiruga-Dios, Miguel-Ángel 1
  2. López-Iñesta, Emilia 2
  3. Diez-Ojeda, María 3
  4. Sáiz-Manzanares, María-Consuelo 3
  5. Vázquez-Dorrío, José-Benito 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  3. 3 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Revista:
Journal for the Study of Education and Development, Infancia y Aprendizaje

ISSN: 0210-3702 1578-4126

Año de publicación: 2021

Título del ejemplar: STEAM education: Contributing evidence of validity and effectiveness / Educación STEAM: Aportando pruebas de validez y efectividad

Volumen: 44

Número: 4

Páginas: 871-908

Tipo: Artículo

DOI: 10.1080/02103702.2021.1925475 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Journal for the Study of Education and Development, Infancia y Aprendizaje

Resumen

La enseñanza STEAM se está imponiendo en el mundo educativo desde hace unos años. Este artículo presenta dos contribuciones fundamentales a la literatura STEAM. En primer lugar, la descripción detallada de una experiencia de trabajo STEAM llevada a cabo con alumnado de Secundaria empleando Aprendizaje Basado en Proyectos, donde las disciplinas de ciencias y arte aparecen conectadas e integradas. Para esto, se analizan las conexiones que se establecen entre las disciplinas S, T, E, A y M. En segundo lugar, el estudio de las relaciones generadas entre los integrantes de la comunidad educativa y los agentes educativos externos (artistas, investigadores, centros de investigación) involucrados en el proyecto. Estas conexiones resultan una parte relevante de la educación STEAM. Además, se analiza de manera cuantitativa el aumento del rendimiento y del interés por la ciencia y la tecnología manifestado por el alumnado, que percibe una mejora en algunas habilidades, como trabajo en equipo, creatividad, comunicación y autocrítica.

Información de financiación

Referencias bibliográficas

  • Aróstegui, J. L. (2016). Exploring the global decline of music education. Arts Education Policy Review, 117(2), 96–103. https://doi.org/10.1080/10632913.2015.1007406 [Taylor & Francis Online], [Google Scholar]
  • Benítez, A. J., Rodríguez, V., & Utray, F. (2013). Guion técnico y planificación de la realización. Universidad Carlos III de Madrid. https://e-archivo.uc3m.es/bitstream/handle/10016/16373/guion_tecnico_2013.pdf [Google Scholar]
  • Bouillion, L. M., & Gomez, L. M. (2001). Connecting school and community with science learning: Real world problems and school–community partnerships as contextual scaffolds. Journal of Research in Science Teaching, 38(8), 878–898. https://doi.org/10.1002/tea.1037 [Crossref], [Web of Science ®], [Google Scholar]
  • Boy, G. A. (2013). From STEM to STEAM: Toward a human-centred education, creativity & learning thinking. Proceedings of the 31st European conference on cognitive ergonomics (p. 3). ACM. http://ntrs.nasa.gov/search.jsp?print=yes&R=20130011666 [Crossref], [Google Scholar]
  • Chu, H. E., Martin, S. N., & Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251–1266. https://doi.org/10.1007/s10763-018-9922-y [Crossref], [Web of Science ®], [Google Scholar]
  • Cilleruelo, L., & Zubiaga, A. (2014, November 11-13). Una aproximación a la Educación STEAM. Prácticas educativas en la encrucijada arte, ciencia y tecnología [Paper presentation]. XXI Jornadas de Psicodidáctica, Bilbao, Spain. [Google Scholar]
  • Conradty, C., Sotiriou, S. A., & Bogner, F. X. (2020). How creativity in STEAM modules intervenes with self-efficacy and motivation. Education Sciences, 10(3), 70. https://doi.org/10.3390/educsci10030070 [Crossref], [Web of Science ®], [Google Scholar]
  • Domènech-Casal, J. (2019). STEM: Oportunidades y retos desde la Enseñanza de las Ciencias. Universitas Tarraconensis. Revista de Ciències de l’Educació, 1(2), 154–168. https://doi.org/10.17345/ute.2019.2 [Crossref], [Google Scholar]
  • Gutiérrez, J. S. (2018). El guion cinematográfico: Su escritura y su estatuto artístico. Signa: Revista de la Asociación Española de Semiótica, 27, 523–539. https://doi.org/10.5944/signa.vol27.2018.21855 [Crossref], [Google Scholar]
  • Hernández-Sampieri, R., Collado, F., & Lucio, C. B. (2010). Metodología de la Investigación. McGraw Hill. [Google Scholar]
  • Hunter-Doniger, T., & Sydow, L. (2016). A journey from STEM to STEAM: A middle school case study. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(4–5), 159–166. https://doi.org/10.1080/00098655.2016.1170461 [Taylor & Francis Online], [Google Scholar]
  • Jho, H. (2019). Interdisciplinary approach to combine science and art: Understanding of the paintings of René magritte from the viewpoint of quantum mechanics. Foundations of Science, 24(3), 527–540. https://doi.org/10.1007/s10699-019-09600-z [Crossref], [Web of Science ®], [Google Scholar]
  • Johnson, D., Johnson, R., & Holubec, E. (1999). El aprendizaje cooperativo en el aula. Paidós. [Google Scholar]
  • Kim, H., & Chae, D. H. (2016). The development and application of a STEAM program based on traditional Korean culture. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1925–1936. https://doi.org/10.12973/eurasia.2016.1539a [Web of Science ®], [Google Scholar]
  • Kirby, D. A. (2011). Lab coats in hollywood: Science, scientists, and cinema. MIT Press. https://doi.org/10.7551/mitpress/8483.001.0001 [Crossref], [Google Scholar]
  • Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547–552. https://doi.org/10.1016/j.procs.2013.09.317 [Crossref], [Google Scholar]
  • Lehmann, J., & Gaskins, B. (2019). Learning scientific creativity from the arts. Palgrave Communications, 5(1), 1–5. https://doi.org/10.1057/s41599-019-0308-8 [Crossref], [Google Scholar]
  • Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. Art Education, 69(6), 44–49. https://doi.org/10.1080/00043125.2016.1224873 [Taylor & Francis Online], [Google Scholar]
  • MacDonald, A., Wise, K., Tregloan, K., Fountain, W., Wallis, L., & Holmstrom, N. (2019). Designing STEAM education: Fostering relationality through design‐led disruption. International Journal of Art & Design Education, 39(1), 227–241. https://doi.org/10.1111/jade.12258 [Crossref], [Web of Science ®], [Google Scholar]
  • Martínez-Freire, P. F. (2002). Rasgos básicos de la creatividad científica. http://webpersonal.uma.es/~FREIRE/Hipervc/Creatividad.htm [Google Scholar]
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522 [Crossref], [Web of Science ®], [Google Scholar]
  • Ministerio de Educación, Cultura y Deporte (MECD). (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. MECD. https://www.boe.es/eli/es/rd/2014/12/26/1105 [Google Scholar]
  • National Research Council (NRC) (2007). Taking science to school: Learning and teaching science in grades K-8. In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.), Committee on Science Learning, K-8. The National Academies Press. https://doi.org/10.17226/12190 [Google Scholar]
  • National Research Council (NRC). (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century. In J. W. Pellegrino, & M. L. Hilton, (Eds), Committee on Defining Deeper Learning and 21st Century Skills. Board on Testing and Assessment and Board on Science Education, Division of Behavioral and Social Sciences and Education. The National Academies Press. https://doi.org/10.17226/13398 [Google Scholar]
  • Nistor, A., Gras-Velazquez, A., Billon, N., & Mihai, G. (2018). Science, Technology, Engineering and Mathematics Education Practices in Europe. Scientix Observatory report. European Schoolnet. https://bit.ly/2ADrCai [Google Scholar]
  • Nunnally, J. C. (1967). Psychometric theory. McGraw-Hill. [Google Scholar]
  • Nussbaum, M. C. (2010). Sin fines de lucro. Por qué la democracia necesita de las humanidades. (Rodil, M.V., trad.). Katz editores. [Google Scholar]
  • OECD. (2003). PISA 2012 Assessment and Analytical Framework. https://doi.org/10.1787/19963777 [Google Scholar]
  • Park, N., & Ko, Y. (2012). Computer education’s teaching-learning methods using educational programming language based on STEAM education. IFIP international conference on network and parallel computing (pp. 320–327). Springer. https://doi.org/10.1007/978-3-642-35606-3_38 [Crossref], [Google Scholar]
  • Perales-Palacios, F. J., & Aguilera, D. (2020). Ciencia-Tecnología-Sociedad vs. STEM: ¿evolución, revolución o disyunción? Ápice. Revista de Educación Científica, 4(1), 1–15. https://doi.org/10.17979/arec.2020.4.1.5826 [Crossref], [Google Scholar]
  • Pérez-Tornero, J. M. (2002). Crisis de educación, crisis de comunicación. Ágora Digital, 3, 1–23. http://rabida.uhu.es/dspace/handle/10272/3455 [Google Scholar]
  • Prengaman, E. (2019). Lessons in Process: Similarities between Scientific and Artistic Creative Practice. The STEAM Journal, 4(1), 11. https://doi.org/10.5642/steam.20190401.11 [Google Scholar]
  • Queiruga-Dios, M. Á., López-Iñesta, E., Diez-Ojeda, M., Sáiz-Manzanares, M. C., & Vázquez-Dorrío, J. B. (2020). Citizen Science for Scientific Literacy and the Attainment of Sustainable Development Goals in Formal Education. Sustainability, 12(10), 4283. https://doi.org/10.3390/su12104283 [Crossref], [Web of Science ®], [Google Scholar]
  • Queiruga-Dios, M. Á., Sáiz-Manzanares, M. C., & Montero-García, E. (2019). Adaptive and creative problem-projects in the teaching of science. description of the methodology and appreciation of the students involved. Research in Education and Learning Innovation Archives, 23(23), 1–23. http://dx.doi.org/10.7203/realia.23.15567 [Crossref], [Google Scholar]
  • Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20–26. https://www.teachmeteamwork.com/files/sanders.istem.ed.ttt.istem.ed.def.pdf [Google Scholar]
  • Sanders, M. (2012). Integrative STEM education as “best practice”. In H. Middleton (Ed.), Explorations of best practice in technology, design, & engineering education (Vol. 2, pp. 103–117). Griffith Institute for Educational Research. [Google Scholar]
  • Segarra, V. A., Natalizio, B., Falkenberg, C. V., Pulford, S., & Holmes, R. M. (2018). STEAM: Using the arts to train well-rounded and creative scientists. Journal of Microbiology & Biology Education, 19(1), 1–10. https://dx.doi.org/10.1128%2Fjmbe.v19i1.1360 [Crossref], [Web of Science ®], [Google Scholar]
  • Silverstein, L. B., & Layne, S. (2010). What is Arts Integration? The John F. Kennedy Center for the Performing Arts. https://bit.ly/3dfE8ud [Google Scholar]
  • Staley, J. T. (2003). Astrobiology, the transcendent science: The promise of astrobiology as an integrative approach for science and engineering education and research. Current Opinion in Biotechnology, 14(3), 347–354. https://doi.org/10.1016/S0958-1669(03)00073-9 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking giftedness and gifted education: A proposed direction forward based on psychological science. Psychological Science in the Public Interest, 12(1), 3–54. https://doi.org/10.1177/1529100611418056 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Taylor, P. C. (2016, August 7–9). Why is a STEAM curriculum perspective crucial to the 21st century? 14th Annual conference of the Australian Council for Educational Research. https://researchrepository.murdoch.edu.au/id/eprint/37950/ [Google Scholar]
  • Tsupros, N., Kohler, R., & Hallinen, J. (2009). STEM education: A project to identify the missing components. Intermediate Unit 1 Center for STEM Education and Leonard Gelfand Center for Service Learning and Outreach at Carnegie Mellon University. [Google Scholar]
  • Tveita, J. (1999). Can untraditional learning methods used in physics help girls to be more interested and achieve more in this Subject? In M. Bandiera, S. Caravita, E. Torracca, & M. Vicentini (Eds.), Research in science education in Europe (pp. 133–140). Springer. https://doi.org/10.1007/978-94-015-9307-6_17 [Crossref], [Google Scholar]
  • Van der Lelie, C. (2006). The value of storyboards in the product design process. Personal and Ubiquitous Computing, 10(2–3), 159–162. https://doi.org/10.1007/s00779-005-0026-7 [Crossref], [Web of Science ®], [Google Scholar]
  • Warnock, J. N., & Mohammadi-Aragh, M. J. (2016). Case study: Use of problem-based learning to develop students’ technical and professional skills. European Journal of Engineering Education, 41(2), 142–153. https://doi.org/10.1080/03043797.2015.1040739 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Wells, S., Warelow, P., & Jackson, K. (2009). Problem based learning (PBL): A conundrum. Contemporary Nurse, 33(2), 191–201. https://doi.org/10.5172/conu.2009.33.2.191 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Yakman, G., & Lee, H. (2012). Exploring the exemplary STEAM education in the US as a practical educational framework for Korea. Journal of the Korean Association for Science Education, 32(6), 1072–1086. https://doi.org/10.14697/JKASE.2012.32.6.1072 [Crossref], [Google Scholar]