Gemelos Digitales en la Industria de Procesos

  1. César de Prada Moraga 1
  2. Santos Galán Casado
  3. José Luis Pitarch Pérez
  4. Daniel Sarabia Ortiz
  5. Aníbal Galán Prado
  6. Gloria Gutiérrez Rodríguez
  1. 1 Universidad de Valladolid

    Universidad de Valladolid

    Valladolid, España


Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2022

Volume: 19

Issue: 3

Pages: 285-296

Type: Article

DOI: 10.4995/RIAI.2022.16901 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )


Cited by

  • Scopus Cited by: 3 (02-10-2023)
  • Web of Science Cited by: 2 (15-09-2023)
  • Dimensions Cited by: 1 (24-03-2023)

JCR (Journal Impact Factor)

  • Year 2022
  • Journal Impact Factor: 1.5
  • Journal Impact Factor without self cites: 1.3
  • Article influence score: 0.107
  • Best Quartile: Q4
  • Area: AUTOMATION & CONTROL SYSTEMS Quartile: Q4 Rank in area: 55/65 (Ranking edition: SCIE)
  • Area: ROBOTICS Quartile: Q4 Rank in area: 28/30 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2022
  • SJR Journal Impact: 0.289
  • Best Quartile: Q3
  • Area: Computer Science (miscellaneous) Quartile: Q3 Rank in area: 194/326
  • Area: Control and Systems Engineering Quartile: Q3 Rank in area: 187/274

Scopus CiteScore

  • Year 2022
  • CiteScore of the Journal : 3.1
  • Area: Computer Science (all) Percentile: 59
  • Area: Control and Systems Engineering Percentile: 51

Journal Citation Indicator (JCI)

  • Year 2022
  • Journal Citation Indicator (JCI): 0.35
  • Best Quartile: Q3
  • Area: AUTOMATION & CONTROL SYSTEMS Quartile: Q3 Rank in area: 60/81
  • Area: ROBOTICS Quartile: Q4 Rank in area: 36/42


(Data updated as of 24-03-2023)
  • Total citations: 1
  • Recent citations: 1


Digital Twins are virtual plants with an architecture and functionalities that make them actual useful tools for improving many aspects related to process operation, from its control to optimization. Nevertheless, there are several open problems that demand additional research before Digital Twins can be used in real-time as useful tools in decision making. Among them we can cite those related to model updating in real-time and the explicit consideration of uncertainty in models and processes. This paper discusses its architecture and role in the context of Industry 4.0 and, at the same time, analyzes one case study referred to the hydrogen network of an oil refinery that illustrates the possibilities of industrial use of digital twins, as well as the open problems associated to its implementation in the process industry.

Funding information


Bibliographic References

  • Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J. 1999. Nonlinear Predictive Control and Moving Horizon Estimation "" An In-troductory Overview BT. In: Frank, P.M. (Ed.), Advances in Control. Springer London, London, pp. 391-449. DOI: 10.1007/978-1-4471-0853-5_19
  • Arora, N., Biegler, L.T., 2001. Redescending estimators for data reconcilia-tion and parameter estimation. Comput. Chem. Eng. 25, 1585-1599.
  • Aveva, 2020. Enabling the Digital Twin through Unified Engineering [WWW Document]. Blog. URL: (accedido 2.7.22).
  • Bernardo, J. M., 2011. Modern Bayesian Inference: Foundations and Objec-tive Methods. In: Bandyopadhyay, P. S. et al. (Ed.) Handbook of the Phi-losophy of Science, Philosophy of Statistics, North-Holland, 7, pp 263-306. DOI: 10.1016/B978-0-444-51862-0.50008-3
  • Birge, J. R., Louveaux, F., 2011. Introduction to stochastic Programming. Springer Verlag, Springer Series in Operations Research and Financial Engineering.
  • Boss, B., Malakuti, S., Lin, S.W., Usländer, T., Clauer, E., Hoffmeister, M., Stojanovic, L., 2020. Digital Twin and Asset Administration Shell Con-cepts and Application in the Industrial Internet and Industrie 4.0. URL
  • Bröcker, S., Benfer, R., Bortz, M., Engell, S., Knösche, C., Kröner, A., 2021. Process Simulation - Fit for the future? DECHEMA e.V.
  • Darby, M. L., Nikolaou, M., Jones, J., Nicholson, D., 2011. RTO: An over-view and assessment of current practice. Journal of Process Control, 21, 874-884. DOI: 10.1016/j.jprocont.2011.03.009
  • de Prada, C., Sarabia, D., Gutierrez G., Gomez, E., Marmol, S., Sola, M., Pascual, C., Gonzalez, R., 2017. Integration of RTO and MPC in the hydrogen network of a petrol refinery. Processes, 5(3). DOI: 10.3390/pr5010003
  • del Rio Chanona, E. A., Petsagkourakis, P., Bradford, E., Graciano, J. A., & Chachuat, B., 2021. Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation. Computers & Chemical Eng., 147, 107249. DOI:0.1016/j.compchemeng.2021.107249
  • Engell, S., Harjunkoski, I., 2012. Optimal operation: Scheduling, advanced control and their integration. Computers & Chemical Engineering, 47, 121-133. DOI: 10.1016/j.compchemeng.2012.06.039
  • Fracaro, S. G., Glassey, J., Bernaerts, K., Wilk, M., 2022. Immersive technologies for the training of operators in the process industry: A Systematic Literature Review. Computers & Chemical Engineering, 107691.
  • Galán, A.S., 2021. Simulation and optimization methods as decision support tools for operation of oil refinery hydrogen networks. Tesis Doctoral, Universidad de Valladolid. DOI: 10.35376/10324/46435
  • Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2019. Predictive Simulation Applied to Refinery Hydrogen Networks for Oper-ators' Decision Support. IFAC"Papers On Line 52, 862-867. DOI: 10.1016/j.ifacol.2019.06.170
  • Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2021, Real-time reconciled simulation as decision support tool for process operation. Journal of Process Control, 100, 41-64. DOI: 10.1016/j.jprocont.2021.02.003
  • Ge, Z., Song, Z., Ding, S. X., Huang, B., 2017. Data mining and analytics in the process industry: The role of machine learning. IEEE Access, 5, 20590-20616. DOI: 10.1109/ACCESS.2017.2756872
  • Grieves, M., 2019. Virtually Intelligent Product Systems: Digital and physical twins. In: S. Flumerfelt, et al. (Ed.), Complex systems engineering: Theo-ry and Practice. American Institute of Aeronautics and Astronautics, Ch. 7, pp. 175-200. DOI: 10.2514/5.9781624105654.0175.0200
  • Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., Zavala, V. M., 2021. Using ATR-FTIR spectra and convolu-tional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. DOI: 10.1016/j.compchemeng.2021.107547
  • KBC, 2021. Digitalization Manifesto. Now is the Time. URL
  • Lee, J. H., Shin, J., Realff, M. J., 2018. Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering, 114, 111-121. DOI: 10.1016/j.compchemeng.2017.10.008
  • Linderoth, L., Wright, S., 2003. Decomposition Algorithms for Stochastic Programming on a Computational Grid. Computational Optimization and Applications, 24. 207-250. DOI: 10.1023/A:1021858008222
  • Marchetti, A.G., François, G., Faulwasser, T., Bonvin, D., 2016. Modifier Adaptation for Real-Time Optimization-Methods and Applications. Pro-cesses, 4, 55. DOI: 10.3390/pr4040055
  • Masooleh, L. S., Arbogast, J. E., Seider, W. D., Oktem, U., Soroush, M., 2022. Distributed state estimation in large-scale processes decomposed into observable subsystems using community detection. Computers & Chemical Engineering, 156, 107544. DOI: 10.1016/j.compchemeng.2021.107544
  • Mesbah, A., 2018. Stochastic model predictive control with active uncertain-ty learning: A survey on dual control. Annual Reviews in Control, 45, 107-117. DOI: 10.1016/j.arcontrol.2017.11.001
  • Microsoft Corporation, 2020. Azure Digital Twins. URL: (accedido 2.7.22)
  • Oh, T.H., Souza, L.F.S., Lee, J.M., 2021. Applying Digital Application Platform to Optimize Steam Methane Reforming Process, in: 2021 21st Inter. Conf. on Control, Automation and Systems (ICCAS). pp. 388-393.
  • Oliveira-Silva, E., de Prada, C., Navia, D., 2021. Dynamic optimization integrating modifier adaptation using transient measurements. Computers & Chemical Engineering, 149, 107282. DOI: 10.1016/j.compchemeng.2021.107282
  • Palacín, C. G., Vilas, C., Alonso, A. A., Pitarch, J. L., de Prada, C., 2020. Closed-Loop Scheduling in a Canned Food Factory, 53-2, 10791-10796. In IFAC-PapersOnLine. 21st IFAC World Congress.
  • Pfeiffer, B.-M., Oppelt, M., Leingang, C., 2019. Evolution of a Digital Twin for a Steam Cracker, in: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 467-474. DOI: 10.1109/ETFA.2019.8869449
  • Pitarch, J. L., Sala, A., de Prada, C., 2019. A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression. Pro-cesses, 7(3), 170. DOI: 10.3390/pr7030170
  • Qin, S., Jin, T., Van Lehn, R. C., Zavala, V. M., 2021. Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neu-ral Networks. The Journal of Physical Chemistry B, 125(37), 10610-10620. DOI: 10.1021/acs.jpcb.1c05264
  • Reinbold, P. A., Kageorge, L. M., Schatz, M. F., Grigoriev, R. O., 2021. Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression. Nature communica-tions, 12(1), 1-8. DOI: 10.1038/s41467-021-23479-0
  • Sansana, J., Joswiak, M. N., Castillo, I., Wang, Z., Rendall, R., Chiang, L, H., Reis, M. S., 2021. Recent trends on hybrid modeling for Industry 4.0. Computers & Chemical Engineering, 151, 107365. DOI: 10.1016/j.compchemeng.2021.107365
  • Sarabia, D., de Prada, C., Gomez, E., Gutierrez, G, Cristea, S., Sola, J.M., Gonzalez, R., 2012. Data reconciliation and optimal management of hy-drogen networks in a petrol refinery. Control Engineering Practice, 20(4), 343-354. DOI: 10.1016/j.conengprac.2011.06.009
  • Shafto, M.., Conory, M.., Dolye, R., Glaessgen, E., Kemp, C., LeMoigne J., Wang, L., 2010. DRAFT Modeling, Simulation, Information Technology & Processing Technology Area 11.
  • Smallwood, R. D., Sondik, E. J., 1973. The optimal control of partially observable Markov processes over a finite horizon. Operations research, 21(5), 1071-1088. DOI: 10.1287/opre.21.5.1071
  • Yokogawa, 2022. Digital Twin. URL: (accedido 2.7.22).