Anomaly Detection Over an Ultrasonic Sensor in an Industrial Plant
- Esteban Jove 12
- José-Luis Casteleiro-Roca 1
- Jose Manuel González-Cava 2
- Héctor Quintián 1
- Héctor Alaiz-Moretón 3
- Bruno Baruque 4
- Méndez-Pérez, Juan Albino 2
- José Luis Calvo-Rolle 1
-
1
Universidade da Coruña
info
-
2
Universidad de La Laguna
info
-
3
Universidad de León
info
-
4
Universidad de Burgos
info
- Hilde Pérez García (coord.)
- Lidia Sánchez González (coord.)
- Manuel Castejón Limas (coord.)
- Héctor Quintián Pardo (coord.)
- Emilio Corchado Rodríguez (coord.)
Publisher: Springer Suiza
ISBN: 978-3-030-29859-3, 978-3-030-29858-6
Year of publication: 2019
Pages: 492-503
Congress: Hybrid Artificial Intelligent Systems (14. 2019. León)
Type: Conference paper
Abstract
The significant industrial developments in terms of digitalization and optimization, have focused the attention on anomaly detection techniques. This work presents a detailed study about the performance of different one-class intelligent techniques, used for detecting anomalies in the performance of an ultrasonic sensor. The initial dataset is obtained from a control level plant, and different percentage variations in the sensor measurements are generated. For each variation, the performance of three one-class classifiers are assessed, obtaining very good results.
Portal documents are updated daily. This date refers to the updating of information related to the portal structure (people, research groups, organizational units, projects...).