Weighted Hardy inequalities, real interpolation methods and vector measures

  1. del Campo, Ricardo 1
  2. Fernández, Antonio 1
  3. Manzano, Antonio 2
  4. Mayoral, Fernando 1
  5. Naranjo, Francisco 1
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  2. 2 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Revista:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

ISSN: 1578-7303 1579-1505

Año de publicación: 2014

Volumen: 109

Número: 2

Páginas: 337-352

Tipo: Artículo

DOI: 10.1007/S13398-014-0185-3 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

Objetivos de desarrollo sostenible

Referencias bibliográficas

  • Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320, 727–735 (1990)
  • Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) 175 (1980)
  • Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer, Berlin (1976)
  • Brudnyĭ, Y.A., Krugljak, Y.N.: Interpolation functors and interpolation spaces, vol. I. North-Holland Publishing Co., Amsterdam (1991)
  • del Campo, R., Fernández, A., Manzano, A., Mayoral, F., Naranjo, F.: Interpolation with a parameter function and integrable function spaces with respect to vector measures. Math. Inequal. Appl. (to appear)
  • del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: Complex interpolation of $$L^p$$ L p -spaces of vector measures on $$\delta $$ δ -rings. J. Math. Anal. Appl. 405, 518–529 (2013)
  • del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: A note on real interpolation of $$L^p$$ L p -spaces of vector measures on $$\delta $$ δ -rings. J. Math. Anal. Appl. 419, 995–1003 (2014)
  • Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc. 187, 877 (2007)
  • Carro, M.J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112, 480–494 (1993)
  • Cerdà, J., Martín, J., Silvestre, P.: Capacitary function spaces. Collect. Math. 62, 95–118 (2011)
  • Cwikel, M., Kamińska, A., Maligranda, L., Pick, L.: Are generalized Lorentz “spaces” really spaces? Proc. Am. Math. Soc. 132, 3615–3625 (2004)
  • Diestel, J., Uhl Jr, J.J.: Vector measures. Mathematical Surveys, no. 15. American Mathematical Society, Providence (1977)
  • Dobrakov, I.: On submeasures I. Dissertationes Math. (Rozprawy Mat.) 112 (1974)
  • Fernández, A., Mayoral, F., Naranjo, F.: Real interpolation method on spaces of scalar integrable functions with respect to vector measures. J. Math. Anal. Appl. 376, 203–211 (2011)
  • Fernández, A., Mayoral, F., Naranjo, F.: Bartle–Dunford–Schwartz integral versus Bochner, Pettis and Dunford integrals. J. Convex Anal. 20, 339–353 (2013)
  • Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E.A.: Spaces of $$p$$ p -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)
  • Fernández, A., Mayoral, F., Naranjo, F., Sánchez-Pérez, E.A.: Complex interpolation of spaces of integrable functions with respect to a vector measure. Collect. Math. 61(3), 241–252 (2010)
  • Gustavsson, J.: A function parameter in connection with interpolation of Banach spaces. Math. Scand. 42, 289–305 (1978)
  • Kalton, N.J., Peck, N.T., Roberts, J.W.: An $$F$$ F -space sampler. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1984)
  • Klimkin, V.M., Svistula, M.G.: The Darboux property of a nonadditive set function. Sb. Math. 192, 969–978 (2001)
  • Kluvánek, I., Knowles, G.: Vector measures and control systems. Notas de Matemática, no. 58, North-Holland, Amsterdam (1976)
  • Okada, S., Ricker, W.J., Sánchez-Pérez, E.A.: Optimal domain and integral extension of operators: acting in function spaces. Operator theory: advances and applications. Birkhäuser, Basel (2008)
  • Persson, L.E.: Interpolation with a parameter function. Math. Scand. 59, 199–222 (1986)
  • Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96, 145–158 (1990)