IHE y calidad de vida: propuesta de actuación para estudiar los beneficios en el envejecimiento activo y saludable

  1. Miguel Corbí Santamaría
  2. Carmen Palmero Cámara
Revista:
International Journal of Developmental and Educational Psychology: INFAD. Revista de Psicología

ISSN: 0214-9877

Año de publicación: 2013

Título del ejemplar: Familia y educación: Aspectos positivos

Volumen: 1

Número: 2

Páginas: 259-269

Tipo: Artículo

Otras publicaciones en: International Journal of Developmental and Educational Psychology: INFAD. Revista de Psicología

Resumen

Introducción. La exposición intermitente a hipoxia (IHE), una alternativa al entrenamiento en altura para atletas, puede contribuir a mejorar la calidad de vida de la población en general debido a las diferentes adaptaciones que se producen en el organismo. Sin embargo, todavía son pocos los estudios que utilizan esta técnica en poblaciones con mayor riesgo como las personas de edad avanzada, por ese motivo esta comunicación pretende proponer un protocolo inofensivo de IHE como un reto clínico que pueda ayudar a las personas a prevenir y mejorar su calidad de vida a medida que van envejeciendo. Método. Diez sujetos sanos, mujeres (18-21 años, residentes a nivel del mar) se someten a un protocolo de 4 semanas de IHE. Los sujetos fueron asignados al azar al grupo de hipoxia (GH) o al grupo de normoxia (GN). Cada semana, las 5 personas que conformaban el GH llevaron a cabo una sesión de 50 minutos con intervalos de hipoxia de 5 minutos (SatO2 = 80 ± 5) alternando intervalos de normoxia de 5 minutos. Se midieron los datos de serie roja y la concentración de O2 necesarios para desaturar hasta el valor de 80. Resultados. Ninguno de los datos acerca de la serie roja varió significativamente. La concentración de O2 necesaria para conseguir los valores de SatO2 establecidos durante las sesiones disminuyó notablemente a lo largo del protocolo (-9,2%). Conclusiones. El protocolo de duración utilizado no es lo suficientemente largo como para conseguir adaptaciones propias de la altura, ni para conseguir mejoras en la salud. Sin embargo, se ha mostrado suficiente para provocar adaptación aguda al estímulo de hipoxia, por lo que resulta un buen comienzo para incorporar a los estudios de IHE a personas con mayor edad y a otros grupos considerados de riesgo.

Referencias bibliográficas

  • 1. Adams W. C., et al. (1975) Effects of Equivalent Sealevel and Altitude Training on VO and Running Performance. Journal of Applied Physiology, 39, 262-266.
  • 2. Alcalá, E. & Valenzuela, A. E. (Eds.) (2000) El aprendizaje de los mayores ante los retos del nuevo milenio. Madrid: Dykinson.
  • 3. Bailey D. M., et al. (1998) Implications of Moderate Altitude Training for Sea-Level Endurance in Elite Distance Runners. European Journal of Applied Physiology, 78, 360-368.
  • 4. Beidleman, B. A., et al. (2004) Intermittent Altitude Exposures Reduce Acute Mountain Sickness at 4.300m. Clin Sci, 106, 321-328.
  • 5. Bernardi, L. (2001). Interval Hypoxic Training. New York: Plenum publisher.
  • 6. Bonetti, D. L., et al. (2009) Cycling Performance Following Adaptation to Two Protocols of Acutely Intermittent Hypoxia. Int J Sports Physiol Perform, 4, 68-83.
  • 7. Breen, E., et al. (2008) Skeletal Muscle Capillarity during Hypoxia: VEGF and Its Activation. High Altitude Medicine & Biology, 9(2), 158-166.
  • 8. Burtscher, M., et al. (2008) Preaclimatization in Simulated Altitudes. Sleep Breath, 12, 109-114.
  • 9. Caramelo, C., et al. (2006) Respuesta a la Hipoxia. Un Mecanismo Sistémico Basado en el Control de la Expresión Génica. Medicina (Buenos Aires), 66, 155-164.
  • 10. Casas, H., et al. (2000). Effectiveness of Three Short Intermittent Hypobaric Hypoxia Protocols: Hematological Responses. Journal of Exercise Physiology Online, 3 (2), 38-45.
  • 11. Douglas, N. J. (1979) Transient Hypoxaemia during Sleep in Chronic Bronchitis and Emphysema. Lancet, 1, 1-4
  • 12. Eckardt K. U., et al. (1989) Rate of Erythropoietin Formation in Humans in Response to Acute Hypobaric Hypoxia. J Appl Physiol, 66, 1785-8.
  • 13. Flick, M. R. & Block, A. J. (1977) Continuous in Vivo Monitoring of Arterial Oxygenation in Chronic Obstructive Lung Disease. Ann Intern Med, 86, 725-730.
  • 14. Frey W. O., et al. (2000) Influence of Intermittent Exposure to Normobaric Hypoxia on Hematological Indexes and Exercise Performance [abstract]. Med Sci Sports Exerc, 32 Suppl. 5, S65.
  • 15. Gelfi, C., et al. (2004) New Aspects of Altitude Adaptation in Tibetans: a Proteomic Approach. The Faseb Journal, January 20.
  • 16. Gore, C. J., Clark, S.A. & Saunders, P.U. (2007) Nonhematological Mechanisms of Improved Sea-Level Performance after Hypoxic Exposure. Medicine & Science in Sport & Exercise, 1600- 1690.
  • 17. Hellemans J. (1999) Intermittent Hypoxic Training: A Pilot Study. Proceedings of the Second Annual International Altitude Training Symposium; Feb, 18-20; Flagstaff (AZ), 145-54.
  • 18. Heikki, M. K., et al. (2009) Prediction of Acute Mountain Sickness by Monitoring Arterial Oxygen Saturation during Ascent. High Altitude Medicine & Biology, 11 (4), 325-332.
  • 19. Hendriksen I. J. & Meeuwsen T. (2003) The Effect of Intermittent Training in Hypobaric Hypoxia on Sea- Level Exercise: A Cross-Over Study in Humans. European Journal of Applied Physiology, 88, 396-403.
  • 20. Hoppeler, H. & Flück, M. (2002) Normal Mammalian Skeletal Muscle and its Phenotypic Plasticity. J Exp Biol, 205, 2143–2152.
  • 21. Hoppeler, H., et al. (2008) Training in Hypoxia and its Effects on Skeletal Muscle. Scan J Med Sci Sports, 18 (Suppl.1), 38-49.
  • 22. Ibáñez, I. (2005) La Aplicación del Preacondicionamiento Hipóxico en Medicina Antiaging. Trabajo de Investigación presentado en la Universidad de Barcelona.
  • 23. Jensen K., et al. (1993) High-Altitude Training Does Not Increase Maximal Oxygen Uptake Or Work Capacity at Sea Level in Rowers. Scandinavian Journal of Medicine and Science in Sports, 3, 256-262.
  • 24. Katayama, K., et al. (2001) Intermittent Hypoxia Increase Ventilation and SaO2 during Hypoxic Exercise and Hypoxic Chemosensitivity. J Appl Physol, 90, 1431-1440.
  • 25. Katayama, K., et al. (2003). Intermittent Hypoxia Improves Endurance Performance and Submaximal Exercise Efficiency. High Alt Med Bio, 4(3), 291-304.
  • 26. Knaupp W., et al. (1992) Erythropoietin Response to Acute Normobaric Hypoxia in Humans. Journal of Applied Physiology, 73, 837-840.
  • 27. Kolb, J. C., et al. (2004) Effects of Five Consecutive Nocturnal Hypoxic Exposures on the Cerebrovascular Responses to Acute Hypoxia and Hypercapnia in Humans. J Appl Physiol, 96, 1745-1754.
  • 28. Kong, Z., Zang, Y. & Hu, Y. (2013) Normobaric Hypoxia Training Causes more Weight Loss than Normoxia Training after a 4-week Residential Camp for Obese Young Adults. Sleep Breath, Dec 8.49(3), 63-9.
  • 29. Korkushko, O.V., et al. (2003) Effect of Hypoxia on Respiration System in Aging. Fiziol Zh, 30. Laitinen H., et al. (1995) Acclimatization to Living in Normobaric Hypoxia and Training at Sea Level in Runners [abstract]. Med Sci Sports Exerc, 27 Suppl. 5: S109.
  • 31. Lee, J. W., et al. (2004) Hypoxia-Inducible Factor (HIF-1α): Its Protein Stability and Biological Functions. Exp Mol Med, 36, 1-12.
  • 32. Levine B. D. & Stray-Gundersen J. (1997) "Living High-Training Low": Effect of Moderate- Altitude Acclimatization With Low-Altitude Training on Performance. Journal of Applied Physiology, 83, 102-112.
  • 33. López, J.A. (2004) El espacio europeo para la educación permanente Modelos de buenas prác- ticas en los países de la Unión Europea , Revista Ciencias de la Educación, 198-199, 269-283 34. Mackenzie, R., et al. (2008) Acute Normobaric Hypoxia Stimulates Erythropoietin Release. High Alt Med Biol, 9(1), 28-37.
  • 35. Magalhães, J., et al. (2013) Synergistic impact of endurance training and intermittent hypobaric hypoxia on cardiac function and mitochondrial energetic and signaling. International Journal of Cardiology, 168, 5363-5371.
  • 36. Mattila V. & Rusko H. (1996) Effect of Living High and Training Low on Sea Level Performance in Cyclists [abstract]. Med Sci Sports Exerc, 28 Suppl. 5, S157.
  • 37. Millet, G. P., et al. (2010) Combining Hypoxic Methods for Peak Performance. Sports Med, 40 (1), 1-25.
  • 38. Morton, J. P. & Cable N. T. (2005) Effects of Intermittent Hypoxic Training on Aerobic and Anaerobic Performance. Ergonomics, 48, 1535–1546.
  • 39. Muza, S. R., et al. (2010) Altitude Preexposure Recommendations for Inducing Acclimatization. High Altitude Medicine & Biology, 11(2), 87-92.
  • 40. Orte, C., Ballester, L. & Touza, C. (2004). University programs for seniors in Spain: analysis and perspectives, Educational Gerontology, 30, 315-328.
  • 41. Palmero, M.C. & Jiménez, A. (2003). Política y Evaluación de la calidad de los programas uni- versitarios de mayores. Una reflexión a la luz del Plan Nacional de Evaluación de la Calidad de las Universidades en Formación. Políticas sociales, educativas y financiación de la formación universitaria de personas mayores y su proyección social, Madrid: Imserso, pp.155-164.
  • 42. Piehl-Aulin K., et al. (1998) Short-Term Intermittent Normobaric Hypoxia – Haematological, Physiological and Mental Effects. Scan J Med Sci Sports, 8, 132-7.
  • 43. Pinazo, S. & Sánchez, M. (2005). Gerontología. Actualización, innovación y propuestas, Madrid: Pearson, Prentice-Hall
  • 44. Prommer, N., et al. (2007) Long-term Intermittent Hypoxia Increases O2-transport Capacity but not VO2max. High Alt Med Biol, 8, 225-235.
  • 45. Pupiš, M. & Čillík, I. (2008) The Influence of Intermittent Hypoxic Training on the Body of an Endurance Athlete. Physical Education and Sport, 6(1), 11-20.
  • 46. Ramos, D.J., et al. (2010) Physiological changes alter intermittent hypoxia program in trained and untrained subjects. Journal of Sport and Health Research, 2(2), 151-166.
  • 47. Richalet, J. P., et al. (2002) Chilean Miners Commuting from Sea Level to 4.500 m.: A Prospective Study. High Alt Med Biol, 3, 159-166.
  • 48. Rodas G. et al., (2004) Efecto de un Programa Combinado de Entrenamiento Físico e Hipoxia Hipobárica Intermitente en la Mejora del Rendimiento Físico de Triatletas de Alto Nivel. Apunts. Medicina de L ' Esport, 144, 5-10.
  • 49. Roels, B. et al., (2005) Effects of Hypoxic Interval Training on Cycling Performance. Physical Fitness and Performance, 138-146.
  • 50. Rodríguez, F. et al., (1999) Intermittent Hypobaric Hypoxia Stimulates Erythropoiesis and Improves Aerobic Capacity. Medicine & Science in Sport & Exercise, 264-268.
  • 51. Rodríguez F. A., et al. (2000) Erythropoietin Acute Reaction and Hematological Adaptations to Short, Intermittent Hypobaric Hypoxia. Eur J Appl Physiol, 82, 170-7.
  • 52. Rusko H. K., et al. (1995) Living High, Training Low: A New Approach to Altitude Training at Sea Level in Athletes [abstract]. Med Sci Sports Exerc, 27 Suppl. 5:S6.
  • 53. Rusko H. K., et al. (1999) Effect of Living in Hypoxia and Training in Normoxia on Sea Level VO and Red Cell Mass [abstract]. Med Sci Sports Exerc, 31 Suppl. 5:S86.
  • 54. Rusko, H., Tikkanen, H. & Peltonen, J. (2004) Altitude and Endurance Training. J Sports Sci, 22, 928-945.
  • 55. Saunders, P.U., et al. (2013) Relationship between Changes in Haemoglobin Mass and Maximal Oxygen Uptake after Hypoxic Exposure. Br J Sport Med, 47, i26-i30.
  • 56. Schega, L., et al. (2013) Effects of Intermittent Hypoxia on Cognitive Performance and Quality of Life in Elderly Adults: a Pilot Study. Gerontology, 59(4), 316-23.
  • 57. Semenza, G.L. et al. (2006) Regulation of Gene Expression by HIF-1. Novartis Found Symp, 272, 2–8.
  • 58. Serebrovskaya, T. V. (2002) Intermittent Hypoxia Research in the Former Soviet Union and the Commonwealth of Independent Sates: History and Review of the Concept and Selected Applications. High Alt Med Biol, 3, 205-221.
  • 59. Sullivan, R., et al. (2008) Hypoxia-induced Resistance to Anticancer Drugs is Associated with Decrease Senescence and Requires Hypoxia-inducible Factor-1 Activity. Mol Cancer Ther, 7, 1961-1973.
  • 60. Terrados N., et al. (1988) Effects of Training at Simulated Altitude on Performance and Muscle Metabolic Capacity in Competitive Road Cyclists. European Journal of Applied Physiology, 57, 203-209.
  • 61. Vallier J. M., Chateau P. & Guezennec C. Y. (1996) Effects of Physical Training in A Hypobaric Chamber on the Physical Performance of Competitive Triathletes. European Journal of Applied Physiology, 73, 471-478.
  • 62. Villa, J. G., et al. (2005). Does Intermittent Hypoxia Increase Erythropoiesis in Professional Cyclists During a 3-Week Race? Can J Appl Physiol, 30(1), 61-73.
  • 63. Vogt, M., et al. (2001) Molecular Adaptations in Human Skeletal Muscle to Endurance Training under Simulated Hypoxic Conditions. J Appl Physiol, 91, 173-182.
  • 64. Xi, L. & Serebrovskaya, T. V. (2009) Intermittent Hypoxia. From Molecular Mechanisms to Clinical Applications. New York: Nova Science Publishers.
  • 65. Yang, L., et al. (2012) Hypoxia and Hypoxia-Inducible Factors in Glioblastoma Multiforme Progression and Therapeutic Implications. Exp Cell Res, 318(19), 2417-26.
  • 66. Zhao, T., et al. (2009) Hypoxia-Inducible Factor-1α Gene Polymorphisms and Cancer Risk: a Meta-Analysis. Journal of Experimental & Clinical Cancer Research, 29, 159.
  • 67. Hypoxia-Inducible factor-1alpha Gene Polymor
  • 68. Zoll, J., et al. (2006) Exercise Training in Normobaric Hypoxia in Endurance Runners. III. Muscular Adjustments of Selected Gene Transcripts. J Appl Physiol, 100, 1258-1266