Towards Automatic Tutoring of Custom Student-Stated Math Word Problems
- Arnau-González, Pablo
- Serrano-Mamolar, Ana
- Katsigiannis, Stamos
- Arevalillo-Herráez, Miguel
- Wang, N. (coord.)
- Rebolledo-Mendez, G. (coord.)
- Dimitrova, V. (coord.)
- Matsuda, N. (coord.)
- Santos, O.C. (coord.)
Editorial: Springer
ISSN: 1865-0929, 1865-0937
ISBN: 9783031363351, 9783031363368
Año de publicación: 2023
Páginas: 639-644
Tipo: Capítulo de Libro
Resumen
Math Word Problem (MWP) solving for teaching math with Intelligent Tutoring Systems (ITSs) faces a major limitation: ITSs only supervise pre-registered problems, requiring substantial manual effort to add new ones. ITSs cannot assist with student-generated problems. To address this, we propose an automated approach to translate MWPs to an ITS’s internal representation using pre-trained language models to convert MWP to Python code, which can then be imported easily. Experimental evaluation using various code models demonstrates our approach’s accuracy and potential for improvement.
Referencias bibliográficas
- Arnau, D., Arevalillo-Herráez, M., González-Calero, J.A.: Emulating human supervision in an intelligent tutoring system for arithmetical problem solving. IEEE Trans. Learn. Technol. 7(2), 155–164 (2014). https://doi.org/10.1109/TLT.2014.2307306
- Bobrow, D.G.: Natural language input for a computer problem solving system. Technical Report. AIM-066, Massachusetts Institute of Technology (1964)
- Fried, D., et al.: Incoder: a generative model for code infilling and synthesis. arXiv:2204.05999 (2022)
- Jie, Z., Li, J., Lu, W.: Learning to reason deductively: math word problem solving as complex relation extraction. In: Annual Meeting of the Association for Computational Linguistics (2022)
- Jie, Z., Li, J., Lu, W.: Learning to reason deductively: math word problem solving as complex relation extraction. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 5944–5955 (2022)
- Lan, Y., et al.: Mwptoolkit: an open-source framework for deep learning-based math word problem solvers. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 13188–13190 (2022). https://doi.org/10.1609/aaai.v36i11.21723
- Li, J., Wang, L., Zhang, J., Wang, Y., Dai, B.T., Zhang, D.: Modeling intra-relation in math word problems with different functional multi-head attentions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 6162–6167 (2019). https://doi.org/10.18653/v1/P19-1619
- Li, Z., et al.: Seeking patterns, not just memorizing procedures: contrastive learning for solving math word problems. arXiv preprint arXiv:2110.08464 (2021)
- Nijkamp, E., et al.: Codegen: an open large language model for code with multi-turn program synthesis. ArXiv preprint, abs/2203.13474 (2022)
- Patel, A., Bhattamishra, S., Goyal, N.: Are NLP models really able to solve simple math word problems? In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094 (2021)
- Xie, Z., Sun, S.: A goal-driven tree-structured neural model for math word problems. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 5299–5305 (2019)
- Zhang, J., et al.: Graph-to-tree learning for solving math word problems. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3928–3937 (2021)
Los documentos del portal se actualizan diariamente. Esta fecha hace referencia a la actualización de la información relacionada con la estructura del portal (personas, grupos de investigación, unidades organizativas, proyectos...).