Graphene Formation through Spontaneous Exfoliation of Graphite by Chlorosulfonic Acid: A DFT Study

  1. Bol-Arreba, Alfredo 11
  2. Ayala, Isabel G. 1
  3. Cordero, Nicolás A. 112
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

  2. 2 Institute Carlos I for Theoretical and Computational Physics (IC1), E-18016 Granada, Spain
Journal:
Micro

ISSN: 2673-8023

Year of publication: 2023

Volume: 3

Issue: 1

Pages: 143-155

Type: Article

DOI: 10.3390/MICRO3010011 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Micro

Abstract

Using exfoliating agents is one of the most promising ways for large-scale production of liquid dispersed graphenic materials from graphite. Therefore, it is crucial to know the reason why some molecules have a larger exfoliating power than others. The highest reported experimental yield for the liquid phase single-surfactant spontaneous exfoliation of graphite, i.e., without sonication, has been obtained using chlorosulfonic acid. The ability of this acid to disperse graphite is studied within the framework of Density Functional Theory (DFT). Equilibrium configurations, electron transfers, binding energies, and densities of states are presented for two acid concentrations and for two situations: adsorption (on monolayer and bilayer graphene) and intercalation (in between simple hexagonal and Bernal-stacked bilayer graphene). Experimental exfoliation power and dispersion stability are explained in terms of charge transfer—the largest found among several studied exfoliating and surfactant agents—facilitated by the good geometrical matching of chlorosulfonic acid molecules to constituent carbon rings of graphene. This matching is in the origin of the tendency toward adsorption of chlorosulfonic acid molecules on graphene monolayers when they separate, originating the charging of the monolayers that precludes their reaggregation.

Funding information

Funders

Bibliographic References

  • Novoselov, (2004), Science, 306, pp. 666, 10.1126/science.1102896
  • Coleman, (2013), Accounts Chem. Res., 46, pp. 14, 10.1021/ar300009f
  • Blake, (2008), Nano Lett., 8, pp. 1704, 10.1021/nl080649i
  • Hernandez, (2008), Nat. Nanotech., 3, pp. 563, 10.1038/nnano.2008.215
  • Khan, (2010), Small, 6, pp. 864, 10.1002/smll.200902066
  • Bepete, (2017), Nat. Chem., 9, pp. 347, 10.1038/nchem.2669
  • Salavagione, (2017), Green Chem., 19, pp. 2550, 10.1039/C7GC00112F
  • Nazari, (2019), Colloids Surfaces A Physicochem. Eng. Asp., 582, pp. 123870, 10.1016/j.colsurfa.2019.123870
  • Lotya, (2009), J. Am. Chem. Soc., 131, pp. 3611, 10.1021/ja807449u
  • Lotya, (2010), ACS Nano, 4, pp. 3155, 10.1021/nn1005304
  • Cao, (2016), J. Mater. Chem. B, 4, pp. 152, 10.1039/C5TB02065D
  • Englert, (2009), Adv. Mater., 21, pp. 4265, 10.1002/adma.200901578
  • Ardyani, (2022), J. Colloid Interface Sci., 620, pp. 346, 10.1016/j.jcis.2022.03.145
  • Akter, N., Mawardi Ayob, M.T., Radiman, S., Khandaker, M.U., Osman, H., and Alamri, S. (2021). Bio-Surfactant Assisted Aqueous Exfoliation of High-Quality Few-Layered Graphene. Crystals, 11.
  • Sethurajaperumal, (2022), ACS Sustain. Chem. Eng., 10, pp. 14746, 10.1021/acssuschemeng.2c03742
  • Sun, (2014), Chem. Commun., 50, pp. 10382, 10.1039/C4CC03923H
  • Maraschin, (2022), Mater. Chem. Phys., 290, pp. 126578, 10.1016/j.matchemphys.2022.126578
  • Xiang, (2022), Langmuir, 38, pp. 8222, 10.1021/acs.langmuir.2c00552
  • Tambe, (2022), Mater. Today Proc., 56, pp. 1217, 10.1016/j.matpr.2021.11.173
  • Feng, (2020), Mater. Res. Express, 7, pp. 095009, 10.1088/2053-1591/abb2ca
  • Elbourne, (2016), J. Phys. Chem. Lett., 7, pp. 3118, 10.1021/acs.jpclett.6b01323
  • Tran, (2020), ACS Appl. Nano Mater., 3, pp. 11608, 10.1021/acsanm.0c02781
  • Bari, (2014), Colloids Surfaces A Physicochem. Eng. Asp., 463, pp. 63, 10.1016/j.colsurfa.2014.09.024
  • You, (2013), ACS Nano, 7, pp. 1395, 10.1021/nn3051105
  • Khannanov, (2021), Carbon, 173, pp. 154, 10.1016/j.carbon.2020.11.005
  • Advincula, (2021), Carbon, 178, pp. 649, 10.1016/j.carbon.2021.03.020
  • Behabtu, (2010), Nat. Nanotechnol., 5, pp. 406, 10.1038/nnano.2010.86
  • Gudarzi, (2021), NPJ 2D Mater. Appl., 5, pp. 35, 10.1038/s41699-021-00215-2
  • Mutlay, (2013), Fullerenes Nanotub. Carbon Nanostruct., 21, pp. 149, 10.1080/1536383X.2011.588813
  • Pagona, (2015), Chem. Commun., 51, pp. 12950, 10.1039/C5CC04689K
  • Du, (2013), J. Mater. Chem. A, 1, pp. 10592, 10.1039/c3ta12212c
  • Bernal, (1924), Proc. R. Soc. London Ser. A, 106, pp. 749, 10.1098/rspa.1924.0101
  • Cordero, (2007), Nanotechnology, 18, pp. 485705, 10.1088/0957-4484/18/48/485705
  • Ayala, (2011), Phys. Rev. B, 84, pp. 165424, 10.1103/PhysRevB.84.165424
  • Ayala, (2012), J. Nanoparticle Res., 14, pp. 1071, 10.1007/s11051-012-1071-6
  • Ebert, (1976), Annu. Rev. Mater. Sci., 6, pp. 181, 10.1146/annurev.ms.06.080176.001145
  • Samuelson, (1980), J. Phys. C Solid State Phys., 13, pp. 5105, 10.1088/0022-3719/13/27/009
  • Lee, (2008), J. Chem. Phys., 129, pp. 234709, 10.1063/1.2975333
  • Horiuchi, (2003), Jpn. J. Appl. Phys., 42, pp. L1073, 10.1143/JJAP.42.L1073
  • Liu, (2009), Phys. Rev. Lett., 102, pp. 015501, 10.1103/PhysRevLett.102.015501
  • Kolmogorov, (2005), Phys. Rev. B, 71, pp. 235415, 10.1103/PhysRevB.71.235415
  • Nanda, (2009), Phys. Rev. B, 80, pp. 165430, 10.1103/PhysRevB.80.165430
  • Vojvodic, (2010), New J. Phys., 12, pp. 013017, 10.1088/1367-2630/12/1/013017
  • Okada, (2009), Jpn. J. Appl. Phys., 48, pp. 050207, 10.1143/JJAP.48.050207
  • Hohenberg, (1964), Phys. Rev., 136, pp. B864, 10.1103/PhysRev.136.B864
  • Kohn, (1965), Phys. Rev., 140, pp. A1133, 10.1103/PhysRev.140.A1133
  • (2022, November 26). Dacapo. Available online: https://wiki.fysik.dtu.dk/dacapo/Introduction.
  • Girifalco, (2002), Phys. Rev. B, 65, pp. 125404, 10.1103/PhysRevB.65.125404
  • Hasegawa, (2004), Phys. Rev. B, 70, pp. 205431, 10.1103/PhysRevB.70.205431
  • Birowska, (2011), Acta Phys. Pol. A, 120, pp. 845, 10.12693/APhysPolA.120.845
  • Hod, (2012), J. Chem. Theory Comput., 8, pp. 1360, 10.1021/ct200880m
  • Enciso, (2022), Solid State Commun., 341, pp. 114553, 10.1016/j.ssc.2021.114553
  • Vanderbilt, (1990), Phys. Rev. B, 41, pp. 7892, 10.1103/PhysRevB.41.7892
  • Khantha, (2004), Phys. Rev. B, 70, pp. 125422, 10.1103/PhysRevB.70.125422
  • Khantha, (2008), Phys. Rev. B, 78, pp. 115430, 10.1103/PhysRevB.78.115430
  • Yokoyama, (2014), Comput. Mater. Sci., 83, pp. 418, 10.1016/j.commatsci.2013.11.004
  • Monkhorst, (1976), Phys. Rev. B, 13, pp. 5188, 10.1103/PhysRevB.13.5188
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G.A. (2022, November 26). Gaussian 09. Gaussian Inc. Wallingford CT 2009. Available online: https://gaussian.com/.
  • Kim, (2006), J. Phys. Chem. B, 110, pp. 1541, 10.1021/jp055110c
  • Matarredona, (2003), J. Phys. Chem. B, 107, pp. 13357, 10.1021/jp0365099
  • Schaefer, (2003), J. Appl. Cryst., 36, pp. 553, 10.1107/S0021889803005028
  • Mulliken, (1955), J. Chem. Phys., 23, pp. 1833, 10.1063/1.1740588
  • Baskin, (1955), Phys. Rev., 100, pp. 544, 10.1103/PhysRev.100.544
  • Wang, (2015), Nat. Comm., 6, pp. 8853
  • Charlier, (1994), Europhys. Lett., 28, pp. 403, 10.1209/0295-5075/28/6/005
  • Xu, (2010), Nanotechnology, 21, pp. 065711, 10.1088/0957-4484/21/6/065711
  • Kuganathan, (2021), Micro, 1, pp. 140, 10.3390/micro1010011
  • Aoki, (2007), Solid State Commun., 142, pp. 123, 10.1016/j.ssc.2007.02.013
  • Feng, (2009), Phys. Rev. B, 80, pp. 165407, 10.1103/PhysRevB.80.165407
  • Lee, (2010), Physica E, 42, pp. 732, 10.1016/j.physe.2009.11.148
  • Attaccalite, (2009), Phys. Rev. B, 80, pp. 075431, 10.1103/PhysRevB.80.075431