Quantum revivals in HgTe/CdTe quantum wells and topological phase transitions

  1. Mayorgas, Alberto 2
  2. Calixto, Manuel 2
  3. Cordero, Nicolás A. 12
  4. Romera, Elvira 2
  5. Castaños Garza, Octavio Héctor 3
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

  2. 2 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  3. 3 Universidad Nacional Autónoma de México
    info

    Universidad Nacional Autónoma de México

    Ciudad de México, México

    ROR https://ror.org/01tmp8f25

Revista:
SciPost Physics Core

ISSN: 2666-9366

Año de publicación: 2024

Volumen: 7

Número: 2

Páginas: 1-18

Tipo: Artículo

DOI: 10.21468/SCIPOSTPHYSCORE.7.2.029 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: SciPost Physics Core

Resumen

The time evolution of a wave packet is a tool to detect topological phase transitions in two-dimensional Dirac materials, such as graphene and silicene. Here we extend the analysis to HgTe/CdTe quantum wells and study the evolution of their electron current wave packet, using 2D effective Dirac Hamiltonians and different layer thicknesses. We show that the two different periodicities that appear in this temporal evolution reach a minimum near the critical thickness, where the system goes from normal to inverted regime. Moreover, the maximum of the electron current amplitude changes with the layer thickness, identifying that current maxima reach their higher value at the critical thickness. Thus, we can characterize the topological phase transitions in terms of the periodicity and amplitude of the electron currents.

Referencias bibliográficas

  • 10.1016/0375-9601(89)90943-2
  • 10.1103/PhysRevA.55.4526
  • 10.1016/j.physrep.2003.11.002
  • 10.1103/PhysRevB.80.165416
  • 10.1103/PhysRevA.87.013424
  • 10.1103/PhysRevA.91.043409
  • 10.1209/0295-5075/115/20008
  • 10.1088/0953-8984/25/23/235301
  • 10.3390/nano12121953
  • 10.3390/nano13010095
  • 10.3390/mi14112035
  • 10.1103/PhysRevLett.58.353
  • 10.1103/PhysRevLett.64.2007
  • 10.1103/PhysRevLett.72.3783
  • 10.1103/PhysRevA.54.R37
  • 10.1038/nature11902
  • 10.1103/PhysRevB.72.035321
  • 10.1126/science.1133734
  • 10.1126/science.1148047
  • 10.1143/JPSJ.77.031007
  • 10.1023/A:1023202616602
  • 10.1103/PhysRevB.64.155205
  • 10.1103/PhysRevB.64.085331
  • 10.1088/0256-307x/38/7/077303
  • 10.1126/science.aax8156
  • 10.1126/sciadv.aaw5685
  • 10.1103/PhysRevLett.113.137201
  • 10.1126/science.1234414
  • 10.1209/0295-5075/109/40003
  • 10.1088/0953-8984/27/17/175003
  • 10.1088/1742-5468/2015/06/p06029
  • 10.1209/0295-5075/111/37006
  • 10.1088/2053-1591/ab3fdc
  • 10.1103/PhysRevB.91.235433
  • 10.1103/PhysRevB.86.195405
  • 10.1103/PhysRevLett.110.197402
  • 10.1103/PhysRevB.88.085434
  • 10.1038/srep12295
  • 10.21468/SciPostPhys.16.3.077
  • 10.1103/RevModPhys.83.1057
  • 10.1103/PhysRevB.95.245137
  • 10.1103/PhysRevLett.49.405
  • 10.1007/BF01342591
  • 10.1142/8210
  • 10.1038/nphys1914
  • 10.1103/PhysRevB.86.075418
  • 10.1016/j.physa.2022.128057
  • 10.1103/PhysRev.72.728
  • 10.1103/PhysRevB.89.075416
  • 10.1016/j.physleta.2014.06.040
  • 10.1007/b13586
  • 10.1103/PhysRevLett.100.236601
  • 10.1088/1367-2630/12/6/065012