Cross-cultural adaptation of the Science Motivation Questionnaire II (SMQ-II) for Portuguese-speaking Brazilian secondary school students

  1. Radu Bogdan Toma 1
  2. Ayla Márcia Cordeiro Bizerra 1
  3. Iraya Yánez 2
  4. Jesús Ángel Meneses Villagrá 1
  1. 1 Universidad de Burgos, Burgos
  2. 2 Instituto Federal de Educação
Journal:
Revista Latinoamericana de Psicología

ISSN: 0120-0534

Year of publication: 2023

Volume: 55

Issue: 0

Pages: 109-119

Type: Article

DOI: 10.14349/RLP.2023.V55.13 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Revista Latinoamericana de Psicología

Abstract

Introduction: Science motivation is important for students’ scientific literacy. Yet, there is a lack of valid and reliable measurement tools for the Brazilian context. This study presents the Brazilian Portuguese version of the Science Motivation Questionnaire (SMQ-II) and motivational baseline data. Method: The instrument was translated into Brazilian Portuguese using cross-cultural validation procedures. For structural validity evidence, the responses of 646 secondary school students were subjected to exploratory and confirmatory factor analysis, as well as measurement invariance. For reliability evidence, Cronbach’s alpha (a) and McDonald’s omega (w) were calculated. Students’ motivation was analysed using 2 (gender) x 4 (grade levels) x 3 (study modality) MANOVA. Results: 24 items measuring intrinsic motivation, career motivation, grade motivation, and self-efficacy supported a four-factor structure with adequate reliability against the original five-factor structure (self-determination was not salient). Measurement invariance was established across the gender and study modalities, but not for grade levels. Higher-grade level Brazilian students were less motivated, and girls reported higher intrinsic and career motivation, but lower self-efficacy than boys. Conclusion: These findings lay the foundation for the assessment of Brazilian students’ science motivation, although they also reveal problems in the latent structure of the SMQ-II and call for the development of instruments rooted in contemporary motivational theories

Bibliographic References

  • AERA, NCME, & APA. (2014). Standards for educational and psychological testing. American Psychological Association
  • Aeschlimann, B., Herzog, W., & Makarova, E. (2016). How to foster students’ motivation in mathematics and science classes and promote students’ STEM career choice. A study in Swiss high schools. International Journal of Educational Research, 79, 31- 41. https://doi.org/10.1016/j.ijer.2016.06.004
  • Anderman, E. M. (2020). Achievement motivation theory: Balancing precision and utility. Contemporary Educational Psychology, 61(April), 101864. https://doi.org/10.1016/j. cedpsych.2020.101864
  • Appianing, J., & Van Eck, R. N. (2018). Development and validation of the Value-Expectancy STEM assessment scale for students in higher education. International Journal of Stem Education, 5(24), 1-16. https://doi.org/10.1186/s40594-018-0121-8 Arbuckle, J. L. (2021). Amos (Version 28.0) [Computer Program]. IBM SPSS.
  • Ardura, D., & Pérez-Bitrián, A. (2018). The effect of motivation on the choice of chemistry in secondary schools: Adaptation and validation of the Science Motivation Questionnaire II to Spanish students. Chemistry Education Research and Practice, 19(3), 905-918. https://doi.org/10.1039/c8rp00098k
  • Ato, M., López, J. J., & Benavente, A. (2013). A classification system for research designs in psychology. Anales de Psicologia, 29(3), 1038-1059. https://doi.org/10.6018/analesps.29.3.178511 Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52(1), 1-26. https://doi.org/10.1146/annurev.psych.52.1.1
  • Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186-3191. https://doi.org/10.1097/00007632-200012150-00014
  • Bidegain, G., & Lukas Mujika, J. F. (2020). Exploring the relationship between attitudes toward science and PISA scientific performance. Revista de Psicodidáctica, 25(1), 1-12. https://doi. org/10.1016/j.psicoe.2019.08.002
  • Blalock, C. L., Lichtenstein, M. J., Owen, S., Pruski, L., Marshall, C., & Toepperwein, M. A. (2008). In pursuit of validity: A comprehensive review of science attitude instruments 1935- 2005. International Journal of Science Education, 30(7), 961- 977. https://doi.org/10.1080/09500690701344578
  • Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). Routledge Taylor & Francis Group.
  • Carrasquilla, O. M., Pascual, E. S., & Roque, I. M. S. (2022). The gender gap in STEM Education. Revista de Educacion, (396), 149-172. https://doi.org/10.4438/1988-592X-RE-2022-396-533 Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th edition). Routledge.
  • Ferrando, P. J., & Lorenzo-Seva, U. (2018). Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and Psychological Measurement, 78(5), 762-780. https://doi.org/10.1177/0013164417719308
  • Ferrando, P. J., Lorenzo-Seva, U., Hernández-Dorado, A., & Muñiz, J. (2022). Decálogo para el Análisis Factorial de los Ítems de un Test [Decalogue for the factor analysis of test items]. Psicothema, 34(1), 7-17. https://doi.org/10.7334/psicothema2021.456
  • Fortus, D., & Vedder-Weiss, D. (2014). Measuring students’ continuing motivation for science learning. Journal of Research in Science Teaching, 51(4), 497-522. https://doi.org/10.1002/tea.21136
  • Gaskin, C. J., & Happell, B. (2014). On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use. International Journal of Nursing Studies, 51(3), 511-521. https://doi.org/10.1016/j. ijnurstu.2013.10.005
  • Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159-1176. https://doi.org/10.1002/tea.20442
  • Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2007). Nonscience majors learning science: A theoretical model of motivaton. Journal of Research in Science Teaching, 44(8), 1088-1107. https://doi.org/10.1002/tea.20181
  • Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teaching, 46(2), 127- 146. https://doi.org/10.1002/tea.20267
  • Guo, J., Parker, P. D., Marsh, H. W., & Morin, A. J. S. (2015). Achievement, motivation, and educational choices: A longitudinal study of expectancy and value using a multiplicative perspective. Developmental Psychology, 51(8), 1163–1176. https://doi.org/10.1037/a0039440
  • Ha, M., Shin, S., & Lee, J.-K. (2016). Exploring the motivation for science learning of 3rd year high school students who chose different college majors from their track. Journal of the Korean Association for Science Education, 36(2), 317-324. https://doi.org/10.14697/jkase.2016.36.2.0317
  • Harrington, D. (2009). Confirmatory factor analysis. Oxford University Press Hayes, A. F., & Coutts, J. J. (2020). Use Omega rather than Cronbach’s Alpha for estimating reliability. But…. Communication Methods and Measures, 14(1), 1-24. https://doi.org/10.1080/19 312458.2020.1718629
  • International Journal of Testing, 5(2), 159-168. https://doi.org/10.1207/s15327574ijt0502_4
  • Komperda, R., Hosbein, K. N., Phillips, M. M., & Barbera, J. (2020). Investigation of evidence for the internal structure of a modified science motivation questionnaire II (mSMQ II): A failed attempt to improve instrument functioning across course, subject, and wording variants. Chemistry Education Research and Practice, 21(3), 893-907. https://doi.org/10.1039/d0rp00029a
  • Kosovich, J. J., Hulleman, C. S., Barron, K. E., & Getty, S. (2015). A practical measure of student motivation: Establishing validity evidence for the expectancy-value-cost scale in middle school. Journal of Early Adolescence, 35(5-6), 790-816. https://doi.org/10.1177/0272431614556890
  • Lloret-Segura, S., Ferreres-Traves, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítem: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151-1169. https://doi.org/10.6018/analesps.30.3.199361
  • Lorenzo-Seva, U., & Ferrando, P. J. (2006). FACTOR: A computer program to fit the exploratory factor analysis model. Behavior Research Methods, 38(1), 88-91. https://doi.org/10.3758/BF03192753
  • Lupión-Cobos, T., Franco Mariscal, A. J., & Girón Gambero, J. R. (2019). Predictores de vocación en Ciencia y Tecnología en jóvenes: Estudio de caso sobre percepciones de alumnado de secundaria y la influencia de participar en experiencias educativas innovadoras. Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias, 16(3), 3102. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i3.3102
  • Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned de grees in STEM among U.S. students. Science Education, 95(5), 877-907. https://doi.org/10.1002/sce.20441
  • Mundform, D. J., Shaw, D. G., & Tian, L. K. (2005). Minumum sample size recommendations for conducting factor analyses.
  • O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, and Computers, 32(3), 396-402. https://doi.org/10.3758/bf03200807
  • OECD. (2019). PISA 2018 Results (Volume I): What Students Know and Can Do. https://doi.org/10.1787/5f07c754-en
  • Patil, V. H., Singh, S. N., Mishra, S., & Todd Donavan, D. (2008). Efficient theory development and factor retention criteria: Abandon the “eigenvalue greater than one” criterion. Journal of Business Research, 61(2), 162-170. https://doi.org/10.1016/j. jbusres.2007.05.008
  • Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of Educational Psychology, 95(4), 667-686. https://doi.org/10.1037/0022-0663.95.4.667
  • Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85-129. https://doi.org/10.1080/03057267.20 14.881626
  • Prasetya, A. T., & Ridlo, S. (2018). Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates. Journal of Physics: Conference Series, 983, 012168. https://doi.org/10.1088/1742- 6596/983/1/012168
  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78. https://doi.org/10.1037/0003-066X.55.1.68
  • Salta, K., & Koulougliotis, D. (2015). Assessing motivation to learn chemistry: Adaptation and validation of Science Motivation Questionnaire II with Greek secondary school students. Chemistry Education Research and Practice, 16(2), 237-250. https://doi.org/10.1039/c4rp00196f
  • Salta, K., & Koulougliotis, D. (2020). Domain specificity of motivation: Chemistry and physics learning among undergraduate students of three academic majors. International Journal of Science Education, 42(2), 253-270. https://doi.org/10.1080/09 500693.2019.1708511
  • Schmid, S., & Bogner, F. X. (2017). How an inquiry-based classroom lesson intervenes in science efficacy, career-orientation and self-determination. International Journal of Science Education, 39(17), 2342-2360. https://doi.org/10.1080/09500693.20 17.1380332
  • Schumm, M. F., & Bogner, F. X. (2016). Measuring adolescent science motivation. International Journal of Science Education, 38(3), 434-449. https://doi.org/10.1080/09500693.2016.1147659
  • Taasoobshirazi, G., Heddy, B., Bailey, M. L., & Farley, J. (2016). A multivariate model of conceptual change. Instructional Science, 44(2), 125-145. https://doi.org/10.1007/s11251-016- 9372-2
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed). Pearson Education.
  • Toma, R. B. (2020). Revisión sistemática de instrumentos de actitudes hacia la ciencia (2004-2016). Enseñanza de Las Ciencias, 38(3), 143–159. https://doi.org/10.5565/rev/ensciencias.2854
  • Toma, R. B., & Lederman, N. G. (2022). A comprehensive review of instruments measuring attitudes toward science. Research in Science Education, 52, 567-582. https://doi.org/10.1007/s11165-020-09967-1
  • Toma, R. B., & Meneses-Villagrá, J. Á. (2020). Development and validation of the SUCCESS instrument: Towards a valid and reliable measure of expectancies of success in school science. Current Psychology, 1-15. https://doi.org/10.1007/s12144-020-00958-z
  • Tosun, C. (2013). Adaptation of chemistry motivation questionnaire-II to Turkish: A validity and reliability study. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 173-202
  • Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students’ motivation towards science learning. International Journal of Science Education, 27(6), 639-654. https://doi.org/10.1080/0950069042000323737
  • Velayutham, S., Aldridge, J., & Fraser, B. (2011). Development and validation of an instrument to measure students’ motivation and self-regulation in science learning. International Journal of Science Education, 33(15), 2159-2179. https://doi.org/10.108 0/09500693.2010.541529
  • Wang, X. (2013). Why students choose STEM majors: Motivation, high school learning, and postsecondary context of support. American Educational Research Journal, 50(5), 1081-1121. https://doi.org/10.3102/0002831213488622
  • Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of Black Psychology, 44(3), 219-246. https://doi.org/10.1177/0095798418771807
  • Widaman, K. F., & Revelle, W. (2023). Thinking thrice about sum scores, and then some more about measurement and analysis. Behavior Research Methods, 55, 788–806. https://doi.org/10.3758/s13428-022-01849-w
  • Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of motivation. Contemporary Educational Psychology, 25, 68-81.
  • Wigfield, A., & Eccles, J. S. (2020). 35 years of research on students’ subjective task values and motivation: A look back and a look forward. In Andrew J. Elliot (Ed.), Advances in Motivation Science (pp. 161-198). Elsevier Inc. https://doi.org/10.1016/bs.adms.2019.05.002
  • Yamamura, S., & Takehira, R. (2017). Effect of practical training on the learning motivation profile of Japanese pharmacy students using structural equation modeling. Journal of Educational Evaluation for Health Professions, 14(2). https://doi.org/10.3352/jeehp.2017.14.2