An Automatized Rebalancing System to Address Faradaic Imbalance and Prolong Cycle Life in Alkaline Ferrocyanide – Anthraquinone Redox Flow Batteries

  1. Cantera, Miguel 3
  2. Lubián, Lara 12
  3. Cavusoglu, Koray 2
  4. Rubio‐Presa, Rubén 2
  5. Sanz, Roberto 2
  6. Ruiz, Virginia 12
  7. Cámara, Jose María 3
  8. Ventosa, Edgar 12
  1. 1 International Research Centre in Critical Raw Materials-ICCRAM University of Burgos Plaza Misael Bañuelos s/n E-09001 Burgos Spain
  2. 2 Department of Chemistry University of Burgos Plaza Misael Bañuelos s/n E-09001 Burgos Spain
  3. 3 Department of Electromechanical Engineering University of Burgos Avenida Cantabria s/n. E-09006 Burgos Spain
Revista:
Batteries & Supercaps

ISSN: 2566-6223

Año de publicación: 2024

Tipo: Artículo

DOI: 10.1002/BATT.202400086 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Batteries & Supercaps

Resumen

Aqueous Organic Redox Flow Batteries are a family of promising energy storage systems. However, they face various challenges related to their lifetime, such as the Faradaic imbalance due to the occurrence of parasitic reaction leading to the fading of its energy storage capacity. Herein, automatization of a rebalancing system to reverse the detrimental effects of Faradaic imbalance due to the unavoidable presence of small quantities of oxygen in the negative reservoir or hydrogen evolution reaction is developed and implemented in an alkaline flow battery. A membrane-free rebalancing cell is proposed to promote the oxygen evolution reaction and reverse the accumulated charge in the catholyte showing a 100 % coulombic efficiency. The programmable logic controller monitors the open circuit voltage to calculate the charge stored in each charge/discharge step and closes a circuit so a fixed voltage is applied to the rebalancing cell when the battery needs to be rebalanced. The system is tested using an alkaline flow battery consisting of ferrocyanide and 2,6-dihydroxyanthraquinone, improving the energy capacity retention from 0.27 % cycle-1 and 0.47 % h-1 without rebalancing system to 100 % retention after >850 cycles and >24 days (without Ar-filled glovebox), demonstrating the feasibility of this proposed system to address the Faradaic imbalance.

Referencias bibliográficas

  • Braff W. A., (2016), Nat. Clim. Change, 6, pp. 964, 10.1038/nclimate3045
  • Zhu Z., (2022), Chem. Rev., 122, pp. 16610, 10.1021/acs.chemrev.2c00289
  • Malhotra A., (2016), Renewable Sustainable Energy Rev., 56, pp. 705, 10.1016/j.rser.2015.11.085
  • Sánchez-Díez E., (2021), J. Power Sources, 481, 10.1016/j.jpowsour.2020.228804
  • Alotto P., (2014), Renewable Sustainable Energy Rev., 29, pp. 325, 10.1016/j.rser.2013.08.001
  • Arevalo-Cid P., (2021), Sustain. Energy Fuels, 5, pp. 5366, 10.1039/D1SE00839K
  • Arenas L. F., (2019), Curr. Opin. Electrochem., 16, pp. 117, 10.1016/j.coelec.2019.05.007
  • Watt-Smith M. J., (2009), Encyclopedia of Electrochemical Power Sources, pp. 438, 10.1016/B978-044452745-5.00176-3
  • Arribas B. N., (2016), Renewable Energy and Power Quality Journal, 1, pp. 1025, 10.24084/repqj14.561
  • Kear G., (2012), Int. J. Energy Res., 36, pp. 1105, 10.1002/er.1863
  • Lourenssen K., (2019), J. Energy Storage, 25, 10.1016/j.est.2019.100844
  • Leung P., (2017), J. Power Sources, 360, pp. 243, 10.1016/j.jpowsour.2017.05.057
  • Kwon G., (2021), Acc. Chem. Res., 54, pp. 4423, 10.1021/acs.accounts.1c00590
  • Beh E. S., (2017), ACS Energy Lett., 2, pp. 639, 10.1021/acsenergylett.7b00019
  • Adeniran A., (2022), J. Energy Storage, 56, 10.1016/j.est.2022.106000
  • Fontmorin J. M., (2022), Curr. Opin. Colloid Interface Sci., 61, 10.1016/j.cocis.2022.101624
  • Kwabi D. G., (2020), Chem. Rev., 120, pp. 6467, 10.1021/acs.chemrev.9b00599
  • Fell E. M., (2023), J. Electrochem. Soc., 170, 10.1149/1945-7111/ace936
  • Páez T., (2020), J. Power Sources, 471, 10.1016/j.jpowsour.2020.228453
  • Goulet M. A., (2020), J. Am. Chem. Soc., 141, pp. 8014, 10.1021/jacs.8b13295
  • Nolte O., (2021), Mater. Horiz., 8, pp. 1866, 10.1039/D0MH01632B
  • Kong T., (2023), Angew. Chem. Int. Ed., 62
  • Nourani M., (2019), J. Electrochem. Soc., 166, pp. A3844, 10.1149/2.0851915jes
  • Rubio-Presa R., (2023), ACS Materials Lett., 5, pp. 798, 10.1021/acsmaterialslett.2c01105
  • Páez T., (2019), ACS Appl. Energ. Mater., 2, pp. 8328, 10.1021/acsaem.9b01826
  • Robb B. H., (2023), J. Electrochem. Soc., 170, pp. 30515, 10.1149/1945-7111/acbee6
  • Liu W., (2021), Sci Bull (Beijing), 66, pp. 457, 10.1016/j.scib.2020.08.042
  • Pichugov R., (2023), J. Power Sources, 569, 10.1016/j.jpowsour.2023.233013
  • Poli N., (2023), J. Energy Storage, 58, 10.1016/j.est.2022.106404
  • Rodby K. E., (2020), J. Power Sources, 460, 10.1016/j.jpowsour.2020.227958
  • A. Q. Pham O. K. Chang US 8 916 281 B2 2014.
  • Poli N., (2021), Chem. Eng. J., 405, 10.1016/j.cej.2020.126583
  • Jing Y., (2022), Nat. Chem., 14, pp. 1103, 10.1038/s41557-022-00967-4
  • Hu M., (2023), Adv. Energy Mater., 13, 10.1002/aenm.202203762
  • Páez T., (2021), J. Power Sources, 512, 10.1016/j.jpowsour.2021.230516
  • Shestakov A. L., (2021), Journal of Physics: Conference Series 1864 012073
  • R. Sanz C. Sedano ES2819599 A1 2021.
  • Atmel “AVR121: Enhancing ADC resolution by oversampling Features ” can be found underhttp://ww1.microchip.com/downloads/en/AppNotes/doc8003.pdf 2005.