ALVAR
ARNAIZ GONZALEZ
Profesor Titular de Universidad
JUAN JOSE
RODRIGUEZ DIEZ
Catedrático de Universidad
JUAN JOSE RODRIGUEZ DIEZ-rekin lankidetzan egindako argitalpenak (18)
2022
-
Correction to: Rotation Forest for multi-target regression (International Journal of Machine Learning and Cybernetics, (2022), 13, 2, (523-548), 10.1007/s13042-021-01329-1)
International Journal of Machine Learning and Cybernetics
-
Rotation Forest for multi-target regression
International Journal of Machine Learning and Cybernetics, Vol. 13, Núm. 2, pp. 523-548
-
When is resampling beneficial for feature selection with imbalanced wide data?
Expert Systems with Applications, Vol. 188
2021
-
Approx-SMOTE: Fast SMOTE for Big Data on Apache Spark
Neurocomputing, Vol. 464, pp. 432-437
-
Experimental evaluation of ensemble classifiers for imbalance in Big Data
Applied Soft Computing, Vol. 108
-
Rotation forest for big data
Information fusion, Vol. 74, pp. 39-49
2020
-
An experimental evaluation of mixup regression forests
Expert Systems with Applications, Vol. 151
-
Random Balance ensembles for multiclass imbalance learning
Knowledge-Based Systems, Vol. 193
2018
-
La automatización de aprendizaje automático
Un enfoque multidisciplinar de la optimización (Servicio de Publicaciones e Imagen Institucional), pp. 119-145
-
Local sets for multi-label instance selection
Applied Soft Computing Journal, Vol. 68, pp. 651-666
-
Local sets for multi-label instance selection
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning
Expert Systems with Applications, Vol. 109, pp. 114-130
2016
-
Instance selection for regression by discretization
Expert Systems with Applications, Vol. 54, pp. 340-350
-
Instance selection for regression: Adapting DROP
Neurocomputing, Vol. 201, pp. 66-81
-
Instance selection of linear complexity for big data
Knowledge-Based Systems, Vol. 107, pp. 83-95
-
Random feature weights for regression trees
Progress in Artificial Intelligence, Vol. 5, Núm. 2, pp. 91-103
2015
-
An experimental study on combining binarization techniques and ensemble methods of decision trees
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2012
-
Tool for supporting the teaching of instance selection algorithms
EDULEARN12: 4th International Conference on Education and New Learning Technologies