ANGEL
BALLESTEROS CASTAÑEDA
Catedrático de Universidad
Roma Tre University
Roma, ItaliaPublications en collaboration avec des chercheurs de Roma Tre University (38)
2016
-
The classical Darboux III oscillator: Factorization, spectrum generating algebra and solution to the equations of motion
Journal of Physics: Conference Series
2015
-
Exactly solvable deformations of the oscillator and coulomb systems and their generalization
Journal of Physics: Conference Series
2014
-
A new integrable anisotropic oscillator on the two-dimensional sphere and the hyperbolic plane
Journal of Physics A: Mathematical and Theoretical, Vol. 47, Núm. 34
-
An exactly solvable deformation of the Coulomb problem associated with the Taub-NUT metric
Annals of Physics, Vol. 351, pp. 540-557
-
On quantum deformations of (anti-)de Sitter algebras in (2+1) dimensions
Journal of Physics: Conference Series
2013
-
A maximally superintegrable deformation of the N-dimensional quantum Kepler-Coulomb system
Journal of Physics: Conference Series
-
Preface
International Journal of Geometric Methods in Modern Physics
-
Quantum algebras as quantizations of dual Poisson-Lie groups
Journal of Physics A: Mathematical and Theoretical, Vol. 46, Núm. 19
-
The anisotropic oscillator on the 2D sphere and the hyperbolic plane
Nonlinearity, Vol. 26, Núm. 4, pp. 971-990
2012
-
Comment on "new integrable family in n-dimensional homogeneous Lotka-Volterra systems with Abelian Lie Algebra" [J. Phys. Soc. Jpn. 72 (2003) 973]
Journal of the Physical Society of Japan
2011
-
A new exactly solvable quantum model in N dimensions
Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 375, Núm. 12, pp. 1431-1435
-
New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces
Journal of Physics: Conference Series
-
On Two Superintegrable Nonlinear Oscillators in N Dimensions
International Journal of Theoretical Physics, Vol. 50, Núm. 7, pp. 2268-2277
-
Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability
Annals of Physics, Vol. 326, Núm. 8, pp. 2053-2073
-
Superintegrable oscillator and kepler systems on spaces of nonconstant curvature via the stackel transform
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Vol. 7
2009
-
(Super)integrability from coalgebra symmetry: Formalism and applications
Journal of Physics: Conference Series
-
Hamiltonian systems admitting a Runge-Lenz vector and an optimal extension of Bertrand's theorem to curved manifolds
Communications in Mathematical Physics, Vol. 290, Núm. 3, pp. 1033-1049
-
Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles
Annals of Physics, Vol. 324, Núm. 6, pp. 1219-1233
2008
-
A maximally superintegrable system on an n-dimensional space of nonconstant curvature
Physica D: Nonlinear Phenomena, Vol. 237, Núm. 4, pp. 505-509
-
Bertrand spacetimes as Kepler/oscillator potentials
Classical and Quantum Gravity, Vol. 25, Núm. 16