CESAR IGNACIO
GARCIA OSORIO
Catedrático de Universidad
JUAN JOSE
RODRIGUEZ DIEZ
Catedrático de Universidad
Publicaciones en las que colabora con JUAN JOSE RODRIGUEZ DIEZ (43)
2024
-
Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques
Information Fusion, Vol. 102
-
Disturbing neighbors en un contexto semisupervisado
XX Conferencia de la Asociación Española para la Inteligencia Artificial
-
Ensemble methods and semi-supervised learning for information fusion: A review and future research directions
Information Fusion, Vol. 107
-
SSProteinFitnessPrediction
Zenodo
-
SSProteinFitnessPrediction
Zenodo
2022
-
When is resampling beneficial for feature selection with imbalanced wide data?
Expert Systems with Applications, Vol. 188
2021
-
Approx-SMOTE: Fast SMOTE for Big Data on Apache Spark
Neurocomputing, Vol. 464, pp. 432-437
-
Experimental evaluation of ensemble classifiers for imbalance in Big Data
Applied Soft Computing, Vol. 108
-
Rotation forest for big data
Information fusion, Vol. 74, pp. 39-49
2018
-
Local sets for multi-label instance selection
Applied Soft Computing Journal, Vol. 68, pp. 651-666
-
Local sets for multi-label instance selection
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning
Expert Systems with Applications, Vol. 109, pp. 114-130
2016
-
Instance selection for regression by discretization
Expert Systems with Applications, Vol. 54, pp. 340-350
-
Instance selection for regression: Adapting DROP
Neurocomputing, Vol. 201, pp. 66-81
-
Instance selection of linear complexity for big data
Knowledge-Based Systems, Vol. 107, pp. 83-95
-
Random feature weights for regression trees
Progress in Artificial Intelligence, Vol. 5, Núm. 2, pp. 91-103
2015
-
An experimental study on combining binarization techniques and ensemble methods of decision trees
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
-
Diversity techniques improve the performance of the best imbalance learning ensembles
Information Sciences, Vol. 325, pp. 98-117
-
Random Balance: Ensembles of variable priors classifiers for imbalanced data
Knowledge-Based Systems, Vol. 85, pp. 96-111
2014
-
Tree ensemble construction using a GRASP-based heuristic and annealed randomness
Information Fusion, Vol. 20, Núm. 1, pp. 189-202