Proyecto de Investigación
Proyecto TIN2015-67534-P EMULTILAB
Algoritmos de ensembles para problemas de salidas múltiples, nuevos desarrollos y aplicaciones
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
date_range
Duración del 01 de enero de 2016 al 31 de diciembre de 2019
(48 meses)
Finalizó
euro
65.703,00 EUR
De ámbito Nacional.
Convocatoria:
(AGENCIA ESTATAL DE INVESTIGACION)
Subprograma:
DENTRO DEL PROGRAMA ESTATAL DE FOMENTO DE LA NVESTIGACIÓN CIENTÍFICA Y TÉCNICA DE EXCELENCIA
Investigadores/as
Publicaciones relacionadas con el proyecto (10)
Mostrar por anualidadArtículo
-
Improving the accuracy of machine-learning models with data from machine test repetitions
2022
Journal of Intelligent Manufacturing
-
Rotation Forest for multi-target regression
2022
International Journal of Machine Learning and Cybernetics
-
High-accuracy classification of thread quality in tapping processes with ensembles of classifiers for imbalanced learning
2021
Measurement: Journal of the International Measurement Confederation
-
Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth
2021
Journal of Intelligent Manufacturing
-
Rotation forest for big data
2021
Information fusion
-
Using ensembles for accurate modelling of manufacturing processes in an IoT data-acquisition solution
2020
Applied Sciences (Switzerland)
-
An experimental evaluation of mixup regression forests
2020
Expert Systems with Applications
-
Early and extremely early multi-label fault diagnosis in induction motors
2020
ISA Transactions
-
Random Balance ensembles for multiclass imbalance learning
2020
Knowledge-Based Systems
-
You Are Not My Type: An Evaluation of Classification Methods for Automatic Phytolith Identification
2020
Microscopy and Microanalysis