Multiscale design of supermaterials frontier for high performance engineering
- Jaime Ortún-Palacios 11
- Sarah Fadda 24
- Violeta Yeguas 11
- Roberto Serrano-López 11
- Antonio Mario Locci 4
- Francesco Delogu 4
- Nicolás A. Cordero 113
- Santiago Cuesta-López 11
-
1
Universidad de Burgos
info
-
2
Imperial College London
info
-
3
Universidad de Granada
info
-
4
University of Cagliari
info
- Joaquín Antonio Pacheco Bonrostro (dir.)
- José Luis Cuesta Gómez (coord.)
Publisher: Servicio de Publicaciones e Imagen Institucional ; Universidad de Burgos
ISBN: 978-84-16283-30-9, 84-16283-30-3
Year of publication: 2016
Pages: 251-254
Congress: Jornadas de Doctorandos de la Universidad de Burgos (3. 2016. Burgos)
Type: Conference paper
Abstract
Currently, some of the most important limitations for the optimal design of nanostructured materials with tailored properties are the lack of tools for predictive modelling on the damage suffered and their mechanical behaviour. Note that being able to predict final properties by multiscale modelling is an anticipated design capacity that saves costs and allows designing Optimal solutions in an efficient manner what at level of production line and innovation has indisputable advantages. Therefore, the design of metal matrix composites (MMCs) and nanoscale metallic multilayer composites (NMMCs) is a particularly attractive strategy for the development of a new generation of multifunctional materials with a tremendous number of industrial possibilities.
Portal documents are updated daily. This date refers to the updating of information related to the portal structure (people, research groups, organizational units, projects...).