Una mirada crítica a los modelos teóricos sobre educación STEAM integrada

  1. Jairo Ortiz-Revilla
  2. Raquel Sanz-Camarero
  3. Ileana M. Greca
Revista:
Revista Iberoamericana de Educación

ISSN: 1681-5653 1022-6508

Año de publicación: 2021

Volumen: 87

Número: 2

Páginas: 13-33

Tipo: Artículo

DOI: 10.35362/RIE8724634 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista Iberoamericana de Educación

Resumen

La sociedad cambia rápidamente pero el sistema educativo no está siguiendo un camino paralelo, generándose una urgente necesidad de renovación educativa. En este sentido, la educación integrada de ciencias, tecnología, ingeniería, artes y matemáticas (i-STEAM) representa un enfoque educativo en plena expansión, que se postula alineado con las necesidades educativas de la socie-dad; prueba de ello es el continuo incremento de publicaciones en esta línea de investigación. Existe una clara predominancia de estudios empíricos sobre este enfoque, mientras que su fundamentación teórica está menos desarrollada, lo que suscita un problema para definir su potencial educativo. En este estudio identificamos y revisamos los distintos modelos teóricos desarrollados para la i-STEAM publicados en revistas de alto impacto con el objetivo de realizar una reflexión crítica y de evaluar el alcance real de este enfoque. Los resultados obtenidos evidencian que, si bien existen algunos trabajos que muestran aspectos teóricos relevantes, aún hay pocos con marcos teóricos que proporcionen una fundamentación robusta y holística (teniendo en cuenta aspectos epistemológicos, psicológicos y didácticos) para la i-STEAM. A la luz de estos resultados recalcamos la necesidad de seguir trabajando en el soporte teórico de este enfoque, que permita a los docentes implementarlo de manera efectiva.

Referencias bibliográficas

  • Aguilera, D., Lupiáñez, J. L., Vílchez-González, J. M., y Perales-Palacios, F. J. (2021). In search of a long-awaited consensus on disciplinary integration in STEM education. Mathematics, 9(6), 597. https://doi.org/10.3390/math9060597
  • Aguilera, D., Martín-Páez, T., Valdivia-Rodríguez, V., Ruiz-Delgado, A., Williams-Pinto, L., Vílchez-González, J. M., y Perales-Palacios, F. J. (2018). La enseñanza de las ciencias basada en indagación. Una revisión sistemática de la producción española. Revista de Educación, 381, 259-284. http://doi.org/10.4438/1988-592X-RE-2017-381-388
  • Aguilera, D., y Ortiz-Revilla, J. (2021). STEM vs. STEAM education and student creativity: a systematic literature review. Education Sciences, 11(7), Artículo 331. https://doi.org/10.3390/educsci11070331
  • Ata Aktürk, A., y Demircan, H. O. (2017). A review of studies on STEM and STEAM education in early childhood. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 18(2), 757-776. https://bit.ly/3hUYz4D
  • Bequette, J. W., y Bequette, M. B. (2012). A place for art and design education in the STEM conversation. Art Education, 65(2), 40-47. https://doi.org/10.1080/00043125.2012.11519167
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., y Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
  • Bybee, R. W. (2010). Advancing STEM education: a 2020 vision. Technology and Engineering Teacher, 70(1), 30-35. https://bit.ly/2W4Fsh2
  • Bybee, R. W. (2013). The case for STEM education: challenges and opportunities. NSTA.
  • Chu, H-E., Martin, S. N., y Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251-1266. https://doi.org/10.1007/s10763-018-9922-y
  • Connor, A. M., Karmokar, S., y Whittington, C. (2015). From STEM to STEAM: strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogies, 5(2), 37-47. https://doi.org/10.3991/ijep.v5i2.4458
  • Constantino, T. (2018). STEAM by another name: transdisciplinary practice in art and design education. Arts Education Policy Review, 119(2), 100-106. https://doi.org/10.1080/10632913.2017.1292973
  • Corfo y Fundación Chile. (2017). Preparando a Chile para la sociedad del conocimiento: hacia una coalición que impulse la Educación STEAM. https://bit.ly/3zufT6v
  • Creswell, J. W., y Guetterman, T. C. (2019). Educational research: planning, conducting, and evaluating quantitative and qualitative research (6th ed.). Pearson.
  • Develaki, M. (2020). Comparing crosscutting practices in STEM disciplines. Science & Education, 29(4), 949-979. https://doi.org/10.1007/s11191-020-00147-1
  • Drake S. M., y Reid, J. L. (2020). 21st Century competencies in light of the history of integrated curriculum. Frontiers in Education, 5, Artículo 122. https://doi.org/10.3389/feduc.2020.00122
  • Espinal, L. M., y Silveira, F. (2019). La generación de prácticas, proyectos o programas en educación STEM-STEAM en el marco de una diplomatura virtual para América Latina. En B. Macedo, S. Silveira, M. García Astete, D. Meziat y L. Bengochea (Eds.), Enseñanza y aprendizaje de las ciencias en debate (pp. 622-631). Universidad de Alcalá.
  • European Commission. (2007). Science education now: a renewed pedagogy for the future of Europe. European Communities.
  • García-Carrillo, C., Greca, I. M., y Fernández-Hawrylak, M. (2021). Teacher perspectives on teaching the STEM approach to educational coding and robotics in primary education. Educational Sciences, 11(2), Artículo 64. https://doi.org/10.3390/educsci11020064
  • Greca, I. M., Ortiz-Revilla, J., y Arriassecq, I. (2021). Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1802. http://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802
  • Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., y Baartman, L. (2014). Promoting science and technology in primary education: a review of integrated curricula. Studies in Science Education, 50(1), 47-84. https://doi.org/10.1080/03057267.2013.877694
  • Herro, D., y Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416-438. https://doi.org/10.1080/19415257.2016.1205507
  • Kang, N-H. (2019). A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pacific Science Education, 5(6), 1-22. https://doi.org/10.1186/s41029-019-0034-y
  • Kelley, T. R., y Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1-11. https://doi.org/10.1186/s40594-016-0046-z
  • Kim, P. W. (2016). The wheel model of STEAM education based on traditional Korean scientific contents. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2353-2371. https://doi.org/10.12973/eurasia.2016.1263a
  • Kim, H., y Chae, D-H. (2016). The development and application of a STEAM programbased on traditional Korean culture. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1925-1936. https://doi.org/10.12973/eurasia.2016.1539a
  • Korea Foundation for the Advancement of Science and Creativity. (2012). Policy directions of STEAM education: introductory training of KOFAC STEAM. Foundation for the Advancement of Science and Creativity.
  • Kummanee, J., Nilsook, P., y Wannapiroon, P. (2020). Digital learning ecosystem involving steam gamification for a vocational innovator. International Journal of Information and Education Technology, 10(7), 533-539. https://doi.org/10.18178/ijiet.2020.10.7.1420
  • Kwan, R., y Wong, B. T-M. (2021). Latest advances in STEAM education research and practice: a review of the literature. International Journal of Innovation and Learning, 29(3), 323-339. https://doi.org/10.1504/IJIL.2021.114528
  • Lin, C-L., y Tsai, C-Y. (2021). The effect of a pedagogical STEAM model on students’ project competence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124. https://doi.org/10.1007/s10956-020-09885-x
  • Little, T. (2012). 21st Century learning and progressive education: an intersection. International Journal of Progressive Education, 8(3), 1-9. https://bit.ly/39mAKOA
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., y Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
  • McComas, W. F., y Burgin, S. R. (2020). A critique of “STEM” education. Science & Education, 29(4), 805-829. https://doi.org/10.1007/s11191-020-00138-2
  • Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29(4), 929-948. https://doi.org/10.1007/s11191-020-00144-4
  • Moher, D., Liberati, A., Tetzlaff, J., y Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med, 6(7), 1-6. https://doi.org/10.1371/journal.pmed.1000097
  • National Research Council. (2014). STEM Integration in K-12 education. Status, prospects, and an agenda for research. The National Academies Press.
  • Ortiz-Revilla, J., Greca, I. M., y Adúriz-Bravo, A. (2018). La Educación STEAM y el desarrollo competencial en la Educación Primaria. En I. M. Greca y J. Á. Meneses Villagrá (Eds.), Proyectos STEAM para la Educación Primaria. Fundamentos y aplicaciones prácticas (pp. 41-54). Dextra.
  • Ortiz-Revilla, J. (2020). El desarrollo competencial en la Educación Primaria: efectos de una propuesta STEAM integrada [Tesis doctoral, Universidad de Burgos]. Repositorio Institucional de la Universidad de Burgos. https://bit.ly/39mMWii
  • Ortiz-Revilla, J., Adúriz-Bravo, A., y Greca, I. M. (2020). A framework for epistemological discussion around an integrated STEM education. Science & Education, 29(4), 857-880. https://doi.org/10.1007/s11191-020-00131-9
  • Ortiz-Revilla, J., Greca, I. M., y Arriassecq, I. (2021). A theoretical framework for integrated STEM education. Science & Educacion. Publicación anticipada en línea. https://doi.org/10.1007/s11191-021-00242-x
  • Ortiz-Revilla, J., Greca, I. M., y Meneses-Villagrá, J. Á. (2021). Efectos de una propuesta STEAM integrada en el desarrollo competencial del alumnado de Educación Primaria. Infancia y Aprendizaje. Publicación anticipada en línea. https://doi.org/10.1080/02103702.2021.1925473
  • Osborne, J., y Dillon, J. (2008). Science education in Europe: critical reflections. The Nuffield Foundation.
  • Quigley, C. F., y Herro, D. (2016). “Finding the joy in the unknown”: implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410-426. https://doi.org/10.1007/s10956-016-9602-z
  • Quigley, C., Herro, D., y Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1-2), 1-12. https://doi.org/10.1111/ssm.12201
  • Reynante, B. M., Selbach-Allen, M. E., y Pimentel, D. R. (2020). Exploring the promises and perils of integrated STEM through disciplinary practices and epistemologies. Science & Education, 29(4), 785-803. https://doi.org/10.1007/s11191-020-00121-x
  • Ritz, J. M., y Fan, S-C. (2015). STEM and technology education: international state of the art. International Journal of Technology and Design Education, 25(4), 429-451. https://doi.org/10.1007/s10798-014-9290-z
  • Romero-Ariza, M. (2017). El aprendizaje por indagación: ¿existen suficientes evidencias sobres sus beneficios en la enseñanza de las ciencias? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 27(2), 286-299. https://bit.ly/3Cy1yIm
  • Sanders, M. (2008). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26. https://bit.ly/39qlQqE
  • Teixeira, E. S., Greca, I. M., y Freire, O. (2012). The History and Philosophy of Science in physics teaching: a research synthesis of didactic interventions. Science&Education, 21(6), 771-796. http://doi.org/10.1007/s11191-009-9217-3
  • Trott, C. D., Even, T. L., y Frame, S. M. (2020). Merging the arts and sciences for collaborative sustainability action: a methodological framework. Sustainability Science, 15(4), 1067-1085. https://doi.org/10.1007/s11625-020-00798-7
  • Wannapiroon, N., y Petsangsri, S. (2020). Effects of STEAMification model in flipped classroom learning environment on creative thinking and creative innovation. TEM Journal, 9(4), 1647-1655. https://doi.org/10.18421/TEM94-42
  • Yakman, G. (2008). ST∑@M education: an overview of creating a model of integrative education [Paper presentation]. ITEA 2008 Annual Conference, Salt Lake City, UT, Estados Unidos.
  • Zeidler, D. L. (2016). STEM education: a deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11-26. https://doi.org/10.1007/s11422-014-9578-z
  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., y Howes, E. V. (2005). Beyond STS: a research based framework for socio-scientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048