The IndagApp mobile appan inquiry-based science teaching resource: usability evaluation with pre-service teachers

  1. Iraya Yánez-Pérez
  2. Radu Bogdan Toma
  3. Jesús Ángel Meneses-Villagrá
Revista:
NAER: Journal of New Approaches in Educational Research

ISSN: 2254-7339

Año de publicación: 2024

Volumen: 13

Número: 1

Tipo: Artículo

DOI: 10.1007/S44322-024-00008-7 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: NAER: Journal of New Approaches in Educational Research

Resumen

Virtual laboratories and simulations have emerged as innovative solutions for science teaching. However, existing resources have various limitations and constraints including cognitive load/mental burden and limited coverage of all necessary steps in scientific inquiry, focusing mainly on the experimental simulation. To bridge this gap and address these challenges, the present study introduces the design and usability evaluation of IndagApp, an innovative educational resource explicitly developed to support inquiry-based science teaching. A convergent mixed methods design and a convenience sampling of 90 pre-service teachers were used. The findings indicate that IndagApp exhibits a high level of technological and pedagogical usability. Feedback from the users was incorporated to improve the app, resulting in its final version, which incorporates best practices from existing literature on authentic inquiry-based science teaching. IndagApp is freely accessible in the Spanish language, and compatible with Android 5.0 + smartphones and tablets, as well as PCs running Windows 7 or above operating systems. This research provides a timely and significant educational resource that may assist educators in enacting reform-oriented teaching practices.

Información de financiación

Financiadores

Referencias bibliográficas

  • Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: the challenges and opportunities. Interactive Learning Environments,0(0), 1–13. https:// doi. org/ 10. 1080/ 10494 820. 2020. 18131 80
  • Aditomo, A., & Klieme, E. (2020). Forms of inquiry-based science instruction and their relations with learning outcomes: Evidence from high and low-performing education systems. International Journal of Science Education,42(4), 504–525. https:// doi. org/ 10. 1080/ 09500 693. 2020. 17160 93
  • Aguilera, D., Martin-Paez, T., Valdivia-Rodriguez, V., Ruiz-Delgado, A., Williams-Pinto, L., Vilchez-Gonzalez, J. M., & Perales- Palacios, F. J. (2018). La ensenanza de las ciencias basada en indagacion. Una revision sistematica de la produccion espanola. Revista De Educacion,381, 259–284. https://doi.org/10.4438/1988-592X-RE-2017-381-388
  • Aguilera, D., & Perales-Palacios, F. J. (2020). What effects do didactic interventions have on students’ attitudes towards science? A meta-analysis. Research in Science Education,50(2), 573–597. https:// doi. org/ 10. 1007/ s11165-018-9702-2
  • Ali, N., Ullah, S., & Khan, D. (2022). Interactive laboratories for science education: A subjective study and systematic literature review. Multimodal Technologies and Interaction,6(10). https:// doi. org/ 10. 3390/ mti61 00085
  • Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean; adding an adjective rating. Journal of Usability Studies,4(3), 114–123.
  • Baroudi, S., & Helder, M. R. (2019). Behind the scenes: Teachers’ perspectives on factors affecting the implementation of inquiry-based science instruction. Research in Science and Technological Education, 1–22. https:// doi. org/ 10. 1080/ 02635 143. 2019. 16512 59
  • Brooke, J. (1996). A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & I. L. McClelland (Eds.), Usability evaluation in industry (pp. 207–212). Taylor & Francis.
  • Brooke, J. (2013). SUS: A retrospective. Journal of Usability Studies,8(2), 29–40.
  • Canal, P., Criado, A. M., Garcia-Carmona, A., & Munoz-Franco, G. (2016). Concepciones didacticas y practica docente [Didactic conceptions and teaching practice]. In P. Canal, G. Trave Gonzalez, F. J. Pozuelos Estrada, A. M. Criado, & A. Garcia-Carmona (Eds.), La enseñanza sobre el medio natural y social. Investigaciones y experiencias [Teaching about the natural and social environment. Research and experiences]. (pp. 177–205). Diada.
  • Carrillo, C., & Flores, M. A. (2020). COVID-19 and teacher education: A literature review of online teaching and learning practices. European Journal of Teacher Education,43(4), 466–487. https:// doi. org/ 10. 1080/ 02619 768. 2020. 18211 84
  • Chichekian, T., Shore, B. M., & Tabatabai, D. (2016). First-year teachers’ uphill struggle to implement inquiry instruction: Exploring the interplay among self-efficacy, conceptualizations, and classroom observations of inquiry enactment. SAGE Open, 6(2). https:// doi. org/ 10. 1177/ 21582 44016 649011
  • Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th edition). Routledge.
  • Correia, A. P., Koehler, N., Thompson, A., & Phye, G. (2019). The application of PhET simulation to teach gas behavior on the submicroscopic level: Secondary school students’ perceptions. Research in Science and Technological Education,37(2), 193–217. https:// doi. org/ 10. 1080/ 02635 143. 2018. 14878 34
  • Correia, C. F., & Harrison, C. (2019). Teachers’ beliefs about inquiry-based learning and its impact on formative assessment practice. Research in Science and Technological Education,00(00), 1–22. https:// doi. org/ 10. 1080/ 02635 143. 2019. 16340 40
  • Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II, pp. 515–541). Routledge.
  • Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd edition). Sage.
  • de Jong, T., Gillet, D., Rodriguez-Triana, M. J., Hovardas, T., Dikke, D., Doran, R., Dziabenko, O., Koslowsky, J., Korventausta, M., Law, E., Pedaste, M., Tasiopoulou, E., Vidal, G., & Zacharia, Z. C. (2021). Understanding teacher design practices for digital inquiry–based science learning: The case of Go-Lab. Educational Technology Research and Development,69(2), 417–444. https:// doi. org/ 10. 1007/ s11423-020-09904-z
  • de Jong, T., Lazonder, A. W., Chinn, C. A., Fischer, F., Gobert, J., Hmelo-Silver, C. E., Koedinger, K. R., Krajcik, J. S., Kyza, E. A., Linn, M. C., Pedaste, M., Scheiter, K., & Zacharia, Z. C. (2023). Let’s talk evidence – The case for combining inquirybased and direct instruction. Educational Research Review,39(November 2022), 100536. https:// doi. org/ 10. 1016/j. edurev. 2023. 100536
  • Del Rocio Sevilla-Gonzalez, M., Loaeza, L. M., Lazaro-Carrera, L. S., Ramirez, B. B., Rodriguez, A. V., Peralta-Pedrero, M. L., & Almeda-Valdes, P. (2020). Spanish version of the system usability scale for the assessment of electronic tools: Development and validation. JMIR Human Factors,7(4), 1–7. https:// doi. org/ 10. 2196/ 21161 Emden, M. (2021). Reintroducing “the” scientific method to introduce scientific inquiry in schools?: A cautioning plea not to throw out the baby with the bathwater. SCience and Education,30(5), 1037–1073. https:// doi. org/ 10. 1007/ s11191-021-00235-w
  • Fang, S. C. (2020). Towards scientific inquiry in secondary earth science classrooms: Opportunities and realities. International Journal of Science and Mathematics Education. https:// doi. org/ 10. 1007/ s10763-020-10086-6
  • Garcia-Carmona, A., Criado, A. M., & Cruz-Guzman, M. (2018). Prospective primary teachers’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education,16(2), 237–253. https:// doi. org/ 10. 1007/ s10763-016-9773-3
  • Hurtado-Bermudez, S., & Romero-Abrio, A. (2023). The effects of combining virtual laboratory and advanced technology research laboratory on university students’ conceptual understanding of electron microscopy. Interactive Learning Environments,31(2), 1126–1141. https:// doi. org/ 10. 1080/ 10494 820. 2020. 18217 16
  • Kolil, V. K., & Achuthan, K. (2022). Longitudinal study of teacher acceptance of mobile virtual labs. Education and Information Technologies, 1–34. https:// doi. org/ 10. 1007/ s10639-022-11499-2
  • Lestari, D. P., Supahar, Paidi, Suwarjo, & Herianto. (2023). Effect of science virtual laboratory combination with demonstration methods on lower-secondary school students’ scientific literacy ability in a science course. Education and Information Technologies, 0123456789. https:// doi. org/ 10. 1007/ s10639-023-11857-8
  • Lewis, J. R. (2014). Usability: Lessons learned. and yet to be learned. International Journal of Human-Computer Interaction, 30(9), 663–684. https:// doi. org/ 10. 1080/ 10447 318. 2014. 930311
  • Lewis, J. R. (2018). The system usability scale: Past, present, and future. International Journal of Human-Computer Interaction, 34(7), 577–590. https:// doi. org/ 10. 1080/ 10447 318. 2018. 14553 07
  • LOMLOE. (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. Boletín Oficial del Estado, 340, de 30 de diciembre de 2020 [Organic Law 3/2020, of December 29, 2020, which amends Organic Law 2/2006, of May 3, 2006, on Education. Official State Bulletin, 340, of December 30, 2020]. https:// www. boe. es/ boe/ dias/ 2020/ 12/ 30/ pdfs/ BOE-A-2020-17264. pdf
  • Lowdermilk, T. (2013). User-centered design: A developer’s guide to building user-friendly applications. O’Reilly.
  • Lu, J., Schmidt, M., Lee, M., & Huang, R. (2022). Usability research in educational technology: a state-of-the-art systematic review. Educational Technology Research and Development, 70, 1951-1992. https:// doi. org/ 10. 1007/ s11423-022-10152-6
  • Manyilizu, M. C. (2022). Effectiveness of virtual laboratory vs. paper-based experiences to the hands-on chemistry practical in Tanzanian secondary schools. Education and Information Technologies,28(5), 4831–4848. https:// doi. org/ 10. 1007/ s10639-022-11327-7
  • MINEDUC. (2012). Bases curriculares. Educación Básica [Curricular bases. Basic Education]. https:// archi vos. agenc iaedu cacion. cl/ bibli oteca_ digit al_ histo rica/ orien tacion/ 2012/ bases_ curri cular esbas ica_ 2012. pdf
  • NGSS Lead States. (2013). The Next Generation Science Standards: For states, by states. The National Academies Press. https:// doi. org/ 10. 1016/j. endm. 2015. 07. 014
  • Osborne, J. (2014). Scientific practices and inquiry in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II, pp. 579–599)
  • Pedaste, M., Maeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review,14, 47–61. https:// doi. org/ 10. 1016/j. edurev. 2015. 02. 003
  • Radhamani, R., Kumar, D., Nizar, N., Achuthan, K., Nair, B., & Diwakar, S. (2021). What virtual laboratory usage tells us about laboratory skill education pre- and post-COVID-19: Focus on usage, behavior, intention and adoption. Education and Information Technologies,26(6), 7477–7495. https:// doi. org/ 10. 1007/ s10639-021-10583-3
  • Raman, R., Achuthan, K., Nair, V. K., & Nedungadi, P. (2022). Virtual Laboratories- A historical review and bibliometric analysis of the past three decades. Education and Information Technologies, 27, 11055–11087. https:// doi. org/ 10. 1007/ s10639-022-11058-9
  • Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenacion y las ensenanzas minimas de la Educacion Primaria [Royal Decree 157/2022, of March 1, establishing the organization and minimum teaching requirements for Primary Education]. https:// www. boe. es/ eli/ es/ rd/ 2022/ 03/ 01/ 157/ con
  • Roll, I., Butler, D., Yee, N., Welsh, A., Perez, S., Briseno, A., Perkins, K., & Bonn, D. (2018). Understanding the impact of guiding inquiry: The relationship between directive support, student attributes, and transfer of knowledge, attitudes, and behaviours in inquiry learning. Instructional Science,46(1), 77–104. https:// doi. org/ 10. 1007/ s11251-017-9437-x
  • Romero-Ariza, M., Quesada, A., Abril, A. M., Sorensen, P., & Oliver, M. C. (2019). Highly recommended and poorly used: English and Spanish science teachers’ views of Inquiry-Based Learning (IBL) and its enactment. EURASIA Journal of Mathematics, Science and Technology Education.,16(1), 1–16. https:// doi. org/ 10. 29333/ ejmste/ 109658
  • Sauro, J., & Lewis, J. R. (2016). Quantifying the user experience: Practical statistics for user research. Morgan Kaufmann.
  • Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching,48(9), 1050–1078. https:// doi. org/ 10. 1002/ tea. 20437
  • Schwartz, R. S., Lederman, J. S., & Enderle, P. J. (2023). Scientific inquiry literacy: The missing link on the continuum from science literacy to scientific literacy. In N. G. Lederman, D. L. Zeidler, & J. S. Lederman (Eds.), Handbook of Research on Science Education (Vol. III, pp. 749–782). Routledge.
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education,34(9), 1337–1370. https:// doi. org/ 10. 1080/ 09500 693. 2011. 605182
  • Strat, T. T. S., Henriksen, E. K., & Jegstad, K. M. (2023). Inquiry-based science education in science teacher education: A systematic review. Studies in Science Education,00(00), 1–59. https:// doi. org/ 10. 1080/ 03057 267. 2023. 22071 48
  • Sundararajan, N. K., & Adesope, O. (2020). Keep it coherent: A meta-analysis of the seductive details effect. Educational Psychology Review,32(3), 707–734. https:// doi. org/ 10. 1007/ s10648-020-09522-4
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Pearson Education.
  • Toma, R. B. (2021a). Evidencias de validez de una medida de la motivacion por las ciencias de la naturaleza [Validity evidence for a measure of motivation for science]. Educación XX1, 24(2), 351–374. https:// doi. org/ 10. 5944/ educX X1. 28244
  • Toma, R. B. (2021b). Measuring children’s perceived cost of school science: Instrument development and psychometric evaluation. Studies in Educational Evaluation, 70, 101009. https:// doi. org/ 10. 1016/j. stued uc. 2021. 101009 Toma, R. B. (2022a). Confirmation and structured inquiry teaching: Does it improve students’ achievement motivations in school science? Canadian Journal of Science, Mathematics and Technology Education, 22(1), 28–41. https:// doi. org/ 10. 1007/ s42330-022-00197-3
  • Toma, R. B. (2022b). Effect of confirmation and structured inquiry on attitudes toward school science. School Science and Mathematics, 122(1), 16–23. https:// doi. org/ 10. 1111/ ssm. 12505
  • van der Graaf, J., Segers, E., & de Jong, T. (2020). Fostering integration of informational texts and virtual labs during inquiry-based learning. Contemporary Educational Psychology,62(June), 101890. https:// doi. org/ 10. 1016/j. cedps ych. 2020. 101890
  • Vlachogianni, P., & Tselios, N. (2022). Perceived usability evaluation of educational technology using the System Usability Scale (SUS): A systematic review. Journal of Research on Technology in Education,54(3), 392–409. https:// doi. org/ 10. 1080/ 15391 523. 2020. 18679 38
  • Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations that enhance learning. Science,322(5902), 682–683. https:// doi. org/ 10. 1126/ scien ce. 11619 48
  • Yanez-Perez, I., Toma, R. B., Meneses-Villagra, J. A. (in press a). La brecha digital en la ensenanza de las ciencias en Espana durante las leyes educativas LOE y LOMCE [The digital gap in science education in Spain during the LOE and LOMCE educational laws]. Revista Tecnología, Ciencia y Educación
  • Yanez-Perez, I., Toma, R. B., Meneses-Villagra, J. A. (in press b). Diseno y usabilidad de IndagApp: una app para la ensenanza de las ciencias por indagacion [Design and usability of IndagApp: An app for inquiry-based Science Education]. RIED-Revista Iberoamericana de Educación a Distancia
  • Yaron, D., Karabinos, M., Lange, D., Greeno, J. G., & Leinhardt, G. (2010). The ChemCollective - virtual labs for introductory chemistry courses. Science,328(5978), 584–585. https:// doi. org/ 10. 1126/ scien ce. 11824 35
  • Zacharia, Z. C., Manoli, C., Xenofontos, N., de Jong, T., Pedaste, M., van Riesen, S. A. N., Kamp, E. T., Maeots, M., Siiman, L., & Tsourlidaki, E. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: A literature review. Educational Technology Research and Development,63(2), 257–302. https:// doi. org/ 10. 1007/ s11423-015-9370-0
  • Zhang, L. (2018). Withholding answers during hands-on scientific investigations? Comparing effects on developing students’ scientific knowledge, reasoning, and application. International Journal of Science Education,40(4), 459–469. https:// doi. org/ 10. 1080/ 09500 693. 2018. 14296 92